期刊文献+

Enhanced Li^+ storage properties of few-layered MoS2-C composite microspheres embedded with Si nanopowder 被引量:1

Enhanced Li^+ storage properties of few-layered MoS2-C composite microspheres embedded with Si nanopowder
原文传递
导出
摘要 A few-layered MoS2-C composite material is studied as a supporting material for silicon nanopowder. Microspheres of the few-layered MoS2-C composite embedded with 30 wt.% Si nanopowder are prepared by one-pot spray pyrolysis. The Si nanopowder particles with high capacity are completely surrounded by the few-layered MoS2-C composite matrix. The discharge capacities of the MoS2-C composite microspheres with and without 30 wt.% Si nanopowder after 100 cycles are 1,020 and 718 mAh·g^-1 at a current density of 1,000 mA·g^-1 respectively. The spherical morphology of the MoS2-C composite microspheres embedded with Si nanopowder is preserved even after 100 cycles because of their high structural stability during cycling. The MoS2-C composite layer prevents the formation of unstable solid-electrolyte interface (SEI) layers on the Si nanopowder. Furthermore, as the MoS2-C composite matrix exhibits high capacity and excellent cycling performance, these characteristics are also reflected in the MoS2-C composite microspheres embedded with 30 wt.% Si nanopowder. 很少分层的瞬间 <sub>2</sub>-C 合成材料为硅 nanopowder 作为支持的材料被学习。很少分层的瞬间 <sub>2</sub>-C 的 Microspheres 合成与 30 嵌入 wt.% Si nanopowder 被一个壶水花热分解准备。有高能力的 Si nanopowder 粒子被很少分层的瞬间 <sub>2</sub>-C 完全包围合成矩阵。瞬间 <sub>2</sub>-C 的分泌物能力有或没有在 100 个周期以后的 30 wt.% Si nanopowder 的合成 microspheres 是 1,020 和 718
出处 《Nano Research》 SCIE EI CAS CSCD 2015年第8期2492-2502,共11页 纳米研究(英文版)
关键词 molybdenum sulfide silicon anode material lithium batteries spray pyrolysis 层状复合材料 复合微球 Si粉 纳米硅 嵌入式 存储性能 纳米复合材料 纳米粉体
  • 相关文献

参考文献4

二级参考文献37

  • 1Obrovac, M. N.; Christensen, L. Structural changes in silicon anodes during lithium insertion/extraction. Electrochim. Solid-State Lett. 2004, 7, A93-A96.
  • 2Zhou, S.; Liu, X. H.; Liu, Wang, D. W. Si/TiSi2 heteronanostructures as high-capacity anode material for Li ion batteries. Nano Lett. 2010, 10, 860-863.
  • 3Peng, K. Q.; Jie, J. S.; Zhang, W. J.; Lee, S. T. Silicon nanowires for rechargeable lithium-ion battery anodes. Appl Phys. Lett. 2008, 93, 033105.
  • 4Chart, C. K.; Patel, R. N.; O'Connell, M. J.; Korgel, B. A.; Cui, Y. Solution-grown silicon nanowires for lithium-ion battery anodes. ACSNano 2010, 4, 1443-1450.
  • 5Chan, C. K.; Peng, H. L.; Liu G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31-35.
  • 6Park, M.-H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J. Silicon nanotube battery anodes. Nano Lett. 2009, 9, 3844-3847.
  • 7Song, T.; Xia, J. L.; Lee, J.-H.; Lee, D. H.; Kwon, M.-S.; Choi, J.-M.; Wu, J.; Doo, S. K.; Chang, H.; Park, W.; et al. Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Lett. 2010, 10, 1710-1716.
  • 8Qu, Y. Q.; Liao, L.; Li, Y. J.; Zhang, H.; Huang, Y., Duan, X. F. Electrically conductive and optically active porous silicon nanowires. Nano Lett. 2009, 9, 4539-4543.
  • 9Magasinski, A.; Dixon, P.; Hertzberg, B.; Kvit, A., Ayala, J.; Yushin, G. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 2010, 9, 353-358.
  • 10Kim, H.; Hart, B.; Choo, J.; Cho, J. Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew. Chem. Int. Ed. 2008, 47, 10151- 10154.

共引文献68

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部