期刊文献+

Optimal thermoelectric figure of merit of Si/Ge core-shell nanowires 被引量:2

Optimal thermoelectric figure of merit of Si/Ge core-shell nanowires
原文传递
导出
摘要 We investigate the thermoelectric energy conversion efficiency of Si and Ge nanowires, and in particular, that of Si/Ge core-shell nanowires. We show how the presence of a thin Ge shell on a Si core nanowire increases the overall figure of merit. We find the optimal thickness of the Ge shell to provide the largest figure of merit for the devices. We also consider Ge core/Si shell nanowires, and show that an optimal thickness of the Si shell does not exist, since the figure of merit is a monotonically decreasing function of the radius of the nanowire. Finally, we verify the empirical law relating the electron energy gap to the optimal working temperature that maximizes the efficiency of the device. 我们调查 Si 和 Ge nanowires 的热电的精力变换效率,并且特别地, Si/Ge 核心壳 nanowires 的。我们显示出 Si 核心 nanowire 上的薄 Ge 壳的存在怎么增加优点的全面数字。我们发现 Ge 壳的最佳的厚度为设备提供优点的最大的数字。我们也认为 Ge core/Si 是壳 nanowires,并且证明 Si 壳的最佳的厚度不存在,自从优点的数字是 nanowire 的半径的 monotonically 减少的功能。最后,我们验证联系电子精力差距到最大化设备的效率的最佳的工作温度的实验法律。
出处 《Nano Research》 SCIE EI CAS CSCD 2015年第8期2611-2619,共9页 纳米研究(英文版)
关键词 thermoelectric properties Seebeck coefficient silicon and germanium core-shell nanowires 热电系数 纳米线 硅锗 核壳 能量转换效率 单调递减函数 最佳工作温度 最佳厚度
  • 相关文献

参考文献44

  • 1Nolas, G. S.; Sharp, J.; Goldsmid, H. J. Thermoelectrics: Basic principles and new materials developments; Springer series in material science; Springer Verlag: Berlin, Heidelberg, 2001 ; Vol. 45.
  • 2Goldsmid, H. J. Introduction to Thermoelectricity, 1st ed.; Springer-Verlag: Berlin, 2010; pp 250.
  • 3Rurali, R. Colloquiun: Structural, electronic, and transport properties of silicon nanowires. Rev. Mod. Phys, 2010, 82, 427-449.
  • 4Dubi, Y.; Di Ventra, M. Colloquium: Heat flow and ther- moelectricity in atomic and molecular junctions. Rev. Mod. Phys. 2011, 83, 131-155.
  • 5Takabatake, T.; Suekuni, K.; Nakayama, T. Phonon-glass electron-crystal thermoelectric clathrates: Experiments and theory. Rev. Mod. Phys. 2014, 86, 669-716.
  • 6Tritt, T. M. Thermoelectrics run hot and cold. Science 1996, 272, 1276-1277.
  • 7DiSalvo, F. J. Thermoelectric cooling and power generation Science 1999, 25, 703-706.
  • 8Zhao, L. D.; Lo, S. H.; Zhang, Y. S.; Sun, H.; Tan, G. J.; Uher, C.; Wolverton, C.; Dravid, V. P.; Kanatzidis, M. G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014, 508, 373-377.
  • 9Hicks, L. D.; Dresselhaus, M. S. Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 1993, 47, 12727-12731.
  • 10Hochbaum, A. I.; Chen, R. K.; Delgado, R. D.; Liang, W. J.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. D. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163 167.

同被引文献11

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部