期刊文献+

基于动态设计方法的钢铁企业煤气柜柜容研究

Suitable Capacity of the Gasholder Based on a Dynamic Design Method in Steel Plants
下载PDF
导出
摘要 针对钢铁企业煤气柜的容积设计问题,提出在锅炉燃料负荷调节周期配合条件下,使用动态方法进行设计的方案.通过建立相关的数学模型,使该方法得到了很好的应用.实例计算结果显示,应用该方法所确定的煤气柜容积在稳定煤气系统生产的基础上,可以使煤气柜的设计容积大为降低.运行结果优于目前钢铁企业煤气柜的静态设计方法和经验设计值.最后给出了对应不同的锅炉燃料负荷调节周期,使用动态设计方法得到煤气柜容积最佳方案拟合曲线.解决了钢铁企业剩余煤气的合理分配,并为钢铁企业缓冲用户的优化设计提供了科学的指导方案. In viewof the problem of the gasholder design in steel plants,a dynamic design method was proposed to calculate the rational capacity of gasholders under the boiler fuel load regulating frequency matching condition through establishing mathematical model,which obtained good practice application. The case study showed that the determined volume of the gasholder by the application of this dynamic design method was greatly reduced compared with the previous one on the basis of ensuring stable production of byproduct gas system. The operating results were better than the current gasholder designed by the static methods and empirical design values in steel plants. Finally,the best fitting curve of the suitable capacities of gasholder corresponding to different regulating frequencies of boiler fuel load was given using this dynamic design method.The optimal allocation of surplus gas of the steel plants was solved and scientific guidance was provided for the optimization design of gasholder capacity in buffer users of the steel plants.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第12期1724-1727,1747,共5页 Journal of Northeastern University(Natural Science)
基金 中央高校基本科研业务费专项资金资助项目(N140203002) 国家自然科学基金资助项目(21561122001)
关键词 钢铁联合企业 副产煤气 煤气柜 缓冲用户 高炉煤气 iron and steel enterprise byproduct gas gasholder buffer users blast furnace gas
  • 相关文献

参考文献4

二级参考文献20

  • 1Bryant G F. Energy control ill an integrated steelworks[J].IEEE, 1999:274 279.
  • 2Fukunda K, Makino H, Suzuki Y, et al. Optimal energy distribution control at the steel works[C]//IFAC Simulation of Control Systems. Vienna: [S. l. ], 1986:337-342.
  • 3Akimoto K, Sannomiya N, Nishikawa, et al. An optimal gas supply for a power plant using a mixed interger programming model[J].Automatica, 2001,27(3) :513-518.
  • 4Kim J H, Yi H S, Han C. A novel MILP model for plantwide multiperiod optimization of byproduct gas supply system in the iron and steel making process[J].Trans IChemE, 2003,81 (9) : 1015 - 1025.
  • 5Kim J H, Yi H S, Han C. Plant wide optimal byproduct gas distribution and holder level control in the iron and steel making process [ J ]. Korean Journal of Chemical Engineering, 2003,20(3) :429-435.
  • 6Yi H S, Han C. Industrial application of MILP-based simultaneous compensation to a large scale byproduct gases network in an iron and steel making plant[J]. Industrial & Engineering Chemistry Research, 2004,43 : 119 - 126.
  • 7Higashi I. Energy balance of steel mills and the utilization of by-product gases[J]. Transactions ISIJ, 2002,22 (10) : 57 - 65.
  • 8Cho C H. Optimal boiler load allocation[J ]. Instrumentation Technology, 1998,10(2) :55 - 58.
  • 9Yokoyama R, ho K, Matsumoto Y. Optimal Sizing of a Gas Turbine Cogeneration Plant in Consideration of Its Operational Strategy [J]. J Eng Gas Turbines Power, 1994, 116(1): 32.
  • 10Akimoto K, Sannomiya N, Nishikawa Y. An Optimal Gas Supply for a Power Plant Using a Mixed Integer Programming Model [J]. Automatica, 1991, 27(3): 513.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部