期刊文献+

基于功率谱包络能量和SVM的舰用发动机故障诊断方法

Warship Engine Fault Diagnosis Based on Power Spectral Envelope Energy and SVM
下载PDF
导出
摘要 发动机是军舰上的重要部件之一,其稳定性对军舰的正常航行具有重要影响;以舰用发动机关键部件(主泵轴承)为具体研究对象,提出了基于功率谱包络能量和支持向量机相结合的故障诊断方法;首先获取了大量可表征舰用发动机主泵轴承健康状态的振动加速度信息,对其进行功率谱分析,获得其功率谱的包络能量;以获取的舰用发动机主泵轴承功率谱的包络能量构建特征向量,并设计基于SVM的舰用发动机主泵轴承故障诊断模型,对主泵轴承的故障进行诊断研究;研究结果表明,采用基于功率谱包络能量和SVM相结合的舰用发动机关键部件故障诊断方法,可以很好实现主泵轴承的故障诊断效能,为舰用发动机主泵轴承故障诊断的工程应用奠定了基础。 The engine is one of the important components warship, its stability has a significant impact on the normal navigation of war- ships. The key components of ship engines (main pump bearings) as the research object proposed network fault diagnosis method based on support vector machines for energy and power spectral envelope. First, get a lot vibration acceleration information, can be characterized war- ship bearing the health status of the main pump engine, its power spectrum analysis, power spectrum obtained envelope of energy. The ac- quired warship bearing the main pump engine power spectral envelope energy feature vectors constructed and designed SVM warships engine main pump bearing fault diagnosis model based on the primary pump bearing fault diagnosis. The results show that, based on critical engine components warships network fault diagnosis SVM combination of energy and power spectrum package, you can achieve a good diagnostic performance of the main pump bearing fault laid engines for ship main pump engineering bearing fault diagnosis basis.
出处 《计算机测量与控制》 2015年第12期3953-3955,3965,共4页 Computer Measurement &Control
基金 航空科学基金(2010ZD54012) 国防预研项目(A0520110023) 国防基础科研项目(Z052012B002) 辽宁省自然科学基金(2014024003)
关键词 舰用发动机 功率谱包络能量 主泵轴承 支持向量机 故障诊断 warship engine power spectral envelope energy main pump bearings support vector machines fault diagnosis.
  • 相关文献

参考文献9

二级参考文献72

  • 1谢志江,刘彩利,彭浩.包络分析在齿轮箱故障诊断中的应用[J].振动工程学报,2004,17(z1):493-495. 被引量:2
  • 2张国远,朱善安.滚动轴承的自动监测及故障诊断系统[J].轴承,2005(1):32-34. 被引量:11
  • 3彭文季,罗兴锜.基于粗糙集和支持向量机的水电机组振动故障诊断[J].电工技术学报,2006,21(10):117-122. 被引量:32
  • 4陈霞,李威宣.基于虚拟仪器的滚动轴承故障监测及诊断系统[J].武汉理工大学学报(信息与管理工程版),2007,29(1):41-44. 被引量:8
  • 5[1] Elson J M , Bennett J M. Calculation of the pow er spectra l density from surface profile data[J]. Applied Optics,1995,34(1):201-208.
  • 6[2] Aikens D M, Wolfe C R, Lawsom J K. The use of power spectral density (PSD) functions in specifying optics for the National Ignition Facility[A]. SPIE[C], 1995,2576: 281-291.
  • 7[3] Lawson J K, Wolfe C R, Manes K R, et al. Specification of opti cal compon ents using the power spectral density function[A].SPIE[C], 1995,2536:38-50.
  • 8[1]Boser B E, Guyon I M, Vapnik V N. A training algorithm for optimal margin classifiers[A]. The 5th Annual ACM Workshop on COLT [C]. Pittsburgh:ACM Press, 1992. 144-152.
  • 9[2]Cortes C, Vapnik V N. Support vector networks[J].Machine Learning, 1995, 20(3): 273-297.
  • 10[3]Drucker H, Burges C J C, Kaufman L, et al. Support vector regression machines [A]. Advances in Neural Information Processing Systems[C]. Cambridge: MIT Press, 1997. 155-161.

共引文献374

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部