期刊文献+

锌取代对尖晶石Li_2MnTi_3O_8锂离子电池负极材料微观结构及电化学性能的影响

Effects of Zn Substitution on Microstructure and Electrochemical Properties of Spinel L_i2MnTi_3O_8 Lithium Battery Anode Materials
下载PDF
导出
摘要 采用溶胶-凝胶结合固相烧结法制备具有复杂尖晶石结构(空间群为P4332)的Li_2Mn_1-xZnxTi_3O_8(x=0,0.1,0.5)负极材料,研究锌部分取代锰对Li2Mn Ti_3O_8材料微观结构及电化学性能的影响。结果显示,锌取代之后,Li_2MnTi_3O_8材料的晶胞体积以及晶粒尺寸有明显的降低,然而颗粒大小却没有显著的变化。锌取代对改善Li_2Mn Ti_3O_8材料电化学性能非常有利,在0.1C倍率条件下充放电,50次充放电循环,Li_2Mn Ti_3O_8,Li_2Mn_(0.9)Zn_(0.1)Ti_3O_8和Li_2Mn0.5Zn0.5Ti_3O_8放电容量分别为168,269和298 m A·h/g,且都在第一次循环之后表现出优异的循环稳定性。在1C倍率条件下充放电36次,锌取代材料的放电容量和循环稳定性均好于未取代的材料。 Spinel Li2Mn1-xZnxTi3O8( x = 0,0. 1,0. 5) as anode materials for lithium batteries are prepared by a sol-gel process and solid state sintering. The effects of Zn substitution on the microstructure and electrochemical properties of Li2 Mn Ti3O8material are investigated. The results show that with the substitution of Zn,there is an apparent reduction on the unit cell volume and the grain size,but the active particles size is not remarkably grown. The Zn substitution is quite beneficial to the improvement of the electrochemical properties. After 50 cycles at 0. 1C,the discharge capacities of Li2Mn Ti3O8,Li2Mn0.9Zn0.1Ti3O8 and Li2Mn(0.5)Zn(0.5)Ti3O8 are 168,269 and 298 m A·h / g,respectively,and the cycling stabilities of three materials are all excellent. After 36 cycles at 1C,the discharge capacities and cycling stability of the Zn-substituted materials are better than that without substitution.
出处 《有色金属工程》 CAS CSCD 北大核心 2015年第6期1-6,共6页 Nonferrous Metals Engineering
基金 国家自然科学基金资助项目(51404142) 江苏省自然科学基金资助项目(BK20140936) 教育部高等学校博士点基金资助项目(20133221110009) 江苏高校优势学科建设工程项目(PAPD)
关键词 锂离子电池 负极材料 溶胶-凝胶法 Li2MnTi3O8 锌取代 lithium batteries anode materials sol-gel process Li2MnTi3O8 Zn substitution
  • 相关文献

参考文献14

  • 1Wu H M, Tu J P, Yuan Y F, et al. One-step synthesis LiMn204 cathode by a hydrothermal method[ J]. Journal of Power Sources, 2006, 161 (2) : 1260-1263.
  • 2Dominko R, Vidal-Abraca Garrido C, Bele M, et al. Electrochemical characteristics of LiE_ VTiO4 rock salt phase in Li-ion batteries [ J]. Journal of Power Sources, 2010, 196(16) : 6856-6862.
  • 3Zhu G N, Wang Y G, Xia Y Y. Ti-based compounds as anode materials for Li-ion batteries [ J ] . Energy & Environmental Science, 2012, 5 (5) : 6652-6667.
  • 4Liu J, Song K, van Aken P A, et al. Self-supported Li4TisOl2-C nanotube arrays as high-rate and long-life anode materials for flexible Li-ion batteries [ J ]. Nano Letters, 2014, 14(5) : 2597-2603.
  • 5Hong Z, Zheng X, Ding X, et al. Complex spinel titanate nanowires for a high rate lithium-ion battery [ J ]. Energy &Environmental Science, 2011, 4 (5) : 1886-1891.
  • 6Wang L, Xiao Q, Li Z, et al. Synthesis of Li2 CoTi30s fibers and their application to lithium-ion batteries [ J ]. Electrochimiea Acta, 2012, 77: 77-82.
  • 7Wang J, Zhao H, Shen Y, et al. Structure, stoichiometry, and electrochemical performance of Li2 CoTi30s as an anode material for lithium-ion batteries [ J] . Chem Plus Chem, 2013, 78(12) : 1530-1535.
  • 8Xu Y, Hong Z, Xia L, et al. One step sol-gel synthesis of Li2 ZnTi3Os/C nanocomposite with enhanced lithium-ion storage properties[J]. Eleetrochimica Acta, 2013, 88: 74-78.
  • 9Hong Z, Lan T, Zheng Y, et al. Spinel Li2MTi3Os(M =Mg, Mg0sZn05 ) nanowires with enhanced electrochemical lithium storage[J]. Functional Materials Letters, 2011,4( 1 ) : 65-69.
  • 10Chen W, Du R, Liang H, et al. Lithium storage behavior of manganese based complex spinel titanate as anode material for Li-ion batteries [ J ] . Journal of Power Sources, 2014, 272: 622-628.

二级参考文献38

  • 1Spotnitz R,Franklin J.Abuse behavior of high-power,lith-ium-ion cells[J].J Power Sources,2003,113:81-100.
  • 2Shigematsu Y,Kinoshita S-i,Ue M.Thermal behavior of aC/LiCoO2 cell,its components,and their combinationsand the effects of electrolyte additives[J].J ElectrochemSoc,2006,153:A2166-A2170.
  • 3Zeng Y,Wu K,Wang D,et al.Overcharge investigation oflithium-ion polymer batteries[J].J Power Sources,2006,160:1302-1307.
  • 4Zaghib K,Armand M,Gauthier M.Electrochemistry of an-odes in solid-state Li-ion polymer batteries[J].J Electro-chem Soc,1998,145:3135.
  • 5Ferg E,Gummow R J,Kock A d,et al.Spinel anodes forlithium-ion batteries[J].J Electrochem Soc,1994,141:L147-L150.
  • 6Ohzuku T,Ueda A,Yamamoto N.Zero-strain insertionmaterial of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells[J].J Electrochem Soc,1995,142:1431-1435.
  • 7Zaghib K,Simoneau M,Armand M,et al.Electrochemicalstudy of Li4Ti5O12 as negative electrode for Li-ion polymerrechargeable batteries[J].J Power Sources,1999,82:300-305.
  • 8Sorensen E M,Barry S J,Jung H-K,et al.Three-Dimen-sionally ordered macroporous Li4Ti5O12:Effect of wallstructure on electrochemical properties[J].Chem Mater,2006,18:482-489.
  • 9Ge H,Li N,Li D Y,et al.Study on the theoretical capaci-ty of spinel lithium titanate induced by low-potential inter-calation[J].J Phys Chem C,2009,113:6324-6326.
  • 10Robertson A D,Trevino L,Tukamoto H,et al.New inor-ganic spinel oxides for use as negative electrode materialsin future lithium-ion batteries[J].J Power Sources,1999,82:352-357.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部