期刊文献+

SOFM神经网络的FY-3A/VIRR多光谱图像云相态反演方法 被引量:1

A Cloud Phase Retrieval Approach Based on SOFM Neural Network Using FY-3A/VIRR Multi-channel Images
下载PDF
导出
摘要 针对使用阈值方法反演云相态存在的不足,本文提出了一种基于Self-Organizing Feature Map(SOFM)神经网络的云相态反演方法。采用覆盖中国地域的Feng Yun-3A/Visible and Inf Rared Radiometer(FY-3A/VIRR)多光谱图像开展了云相态反演实验。实验结果表明:SOFM神经网络方法与K-means方法的结果具有较好的一致性,且SOFM神经网络方法反演云相态的准确性优于FY-3A业务产品。此外,SOFM神经网络方法反演云相态所需时间仅为FY-3A业务产品的约1/3。 To address problems of cloud phase retrieval using the threshold method, a cloud phase retrieval approach based on Self-Organizing Feature Map(SOFM) neural network was proposed. Cloud phase retrieval experiments were conducted using Feng Yun-3A/Visible and Inf Rared Radiometer(FY-3A/VIRR) multi-channel images, which cover the China's territory. Experiment results indicated that the results from the SOFM neural network approach and the K-means method have good consistency, and the retrieval accuracy of the SOFM neural network exceeds that of the FY-3A operational product. Additionally, retrieval time consumed by the SOFM neural network approach is only about one third of that of the FY-3A operational product.
出处 《光电工程》 CAS CSCD 北大核心 2015年第12期20-24,共5页 Opto-Electronic Engineering
基金 国家自然科学基金资助项目(11173008) 中央高校基本科研业务费专项资金资助项目(103.1.2E022050205)
关键词 人工神经网络 FY-3A/VIRR 云相态 阈值方法 业务产品 artificial neural network FY-3A/VIRR cloud phase threshold method operational product
  • 相关文献

参考文献12

二级参考文献150

共引文献59

同被引文献15

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部