期刊文献+

基于监测信号边际谱和双谱特征融合的孔系钻削质量分析 被引量:1

Holes drilling quality consistency analysis based on the fusion of marginal spectrum characteristics and bispectrum characteristics of monitoring signals
下载PDF
导出
摘要 从钻削监测信号数据中挖掘与加工质量相关的信息,可有效实现孔系钻削质量检测。提出一种基于融合钻削过程三向加速度振动和声发射监测信号时频特征的孔系钻削质量一致性评估方法。首先采用振动传感器和声发射传感器监控孔系钻削过程;然后对各钻孔监测信号进行Hilbert-Huang变换和高阶谱分析,提取各孔监测信号的边际谱和双谱特征;应用主成分分析方法进行特征降维,特征融合聚类分析,直观获得各钻孔钻削过程监测信号时频特征波动状况。基于钻削过程质量波动与监测信号边际谱的频率能量特征和双谱特征数值变化的耦合关系,并与孔系钻削加工人工质量检测对比表明:融合孔系钻削监测信号边际谱特征和双谱特征进行数据聚类研究可有效进行孔系加工质量的一致性检测,快速分析和识别质量异常钻孔。 The information mined from the drilling process monitoring signals data could be helpful to inspect the holes drilling quality. A holes drilling consistency inspection method was presented based on the fusion of marginal spectrum characteristics and bispectrum characteristics of monitoring signals. Three acceleration vibration sensors and an acoustic emission sensor were used to monitor holes drilling process. The Hilbert Huang transform and a high order spectrum estimation were used to analyse each hole's drilling monitoring signals,of holes drilling monitoring signals marginal spectrum and double spectrum features of rach hole were extracted from the monitoring signals. Finally,the principal component analysis( PCA) method was used to realize features dimension reduction,features fusion and features clustering. the computer conclusion show the change condition of these features directly and clearly. Based on the coupling relationship between the drilling process quality fluctuation and the numerical changes of these features,and comparing with the artificial quality test results of drilling holes,it is concluded that the data clustering analysis on the fusion of marginal spectrum characteristics and bispectrum characteristics of holes drilling monitoring signals can realize the holes drilling quality consistency detection effectively and also analyse and identify the abnormal drilling quality rapidly.
出处 《振动与冲击》 EI CSCD 北大核心 2015年第24期40-45,共6页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(51375419 51375418) 湖南省高校科技创新团队项目(湘教通【2012】318号) 湘潭大学海泡石专项
关键词 孔系钻削 质量一致性检测 边际谱 双谱 主成分分析 holes drilling quality consistency inspection marginal spectrum bispectrum PCA
  • 相关文献

参考文献13

  • 1DEVDAS S,TOM E,CLAUDIO C. New approach to the inspection of cooling holes in aero-engines[J]. Optics and Lasers in Engineering,2009,(47):686-694.
  • 2I.S. Shyha,S.L. Soo,D.K. Aspinwall,S. Bradley,R. Perry,P. Harden,S. Dawson. Hole quality assessment following drilling of metallic-composite stacks[J]. International Journal of Machine Tools and Manufacture . 2011, (7) .
  • 3Christophe Ramirez, Gerard Poulachon, Frederic Rossi, Rachid M'Saoubi. Tool Wear Monitoring and Hole Surrfaceand Quality DuringCFRPDrilling[J].Procedia CIRP,2014,(13): 163-168.
  • 4S. H. Lee, D. Lee. In-process monitoring of drilling burr formation using acoustic emission and a wavelet-based artificial neural network[J]. International Journal of Production Research . 2008, (17).
  • 5COSTES J P. A predictive surface profile model for turning based on spectral analysis[J]. Journal of Materials Processing Technology, 2013, 213(1):94-100.
  • 6Rawat S, Attia H. Characterization of the Dry High Speed Drilling Process of Woven Composites Using Machinability Maps Approach[J]. CIRPAnnals, 2009, 58(1):105–108.
  • 7Susana Ferreiro, Basilio Sierra, Itziar Irigoien, et al. Data mining for quality control: Burr detection in the drilling process[J]. Computers & Industrial Engineering,2011,60(4): 801-810.
  • 8刘贵杰,徐萌,王欣,姜瑞林.基于HHT的管道阀门内漏声发射检测研究[J].振动与冲击,2012,31(23):62-66. 被引量:17
  • 9Gerardo Beruvides, Ramón Quiza, Raúl del Toro, Rodolfo E. Haber.Sensoring systems and signal analysis to monitor tool wear in microdrilling operations on a sintered tungsten–copper composite material[J]. Sensors and Actuators,2013, 199(1):165-175.
  • 10孟宗,李姗姗.基于小波改进阈值去噪和HHT的滚动轴承故障诊断[J].振动与冲击,2013,32(14):204-208. 被引量:34

二级参考文献24

  • 1石志标,陈向伟,张学军.声发射技术在阀门检漏中的应用[J].无损检测,2004,26(8):391-392. 被引量:13
  • 2钟佑明,秦树人,汤宝平.希尔伯特黄变换中边际谱的研究[J].系统工程与电子技术,2004,26(9):1323-1326. 被引量:69
  • 3杨宇,于德介,程军圣.基于EMD与神经网络的滚动轴承故障诊断方法[J].振动与冲击,2005,24(1):85-88. 被引量:145
  • 4高强,杜小山,范虹,孟庆丰.滚动轴承故障的EMD诊断方法研究[J].振动工程学报,2007,20(1):15-18. 被引量:94
  • 5Qin S, Chen DP. Joint Time-Frequency Analysis[J]. IEEE Signal Processing Magazine, 1999, 16(2): 52-67.
  • 6boashash B. Estimating and Interpreting the Instantaneous Frequency of a Signal--Part 1:Fundamentals[J]. Proc. IEEE, 1992, 80(4): 520-538.
  • 7Champency C D. A Handbook of Fourier Theorems[M]. London: Cambridge University Press, 1987.
  • 8Huang N E. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis[J]. J. Proc.R. Soc. Lond. A, 1998, 454: 903-995.
  • 9Cohen L. Time Frequency Analysis[M]. New York: Prentice-Hall, 1995.
  • 10Schlurmann T. Spectral Analysis of Nonlinear Water Waves Based on the Hilbert-Huang Transformation[J]. Journal of Offshore Mechanics and Arctic Engineering- Transactions of the ASME, 2002, 124(1): 22-27.

共引文献117

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部