期刊文献+

改进的LS-SVM数学模型的交通流量预测分析

Predictive Analysis of Traffic Flow Based on Improved LS-SVM Mathematical Model
下载PDF
导出
摘要 针对交通流量数据具有非线性和非平稳性的特点,运用EMD和FOA算法实现LS-SVM核参数和惩罚系数的自适应优化选择,提出了一种基于EFLS-SVM算法的交通流量预测模型。通过EMD提取交通流量数据的细节特征和趋势特征,构建出基于EFLS-SVM的交通流量预测模型,分别进行单步、3步、5步和7步预测。通过不同交通流量预测模型的实验对比发现,EFLS-SVM算法的预测精度和预测效率均优于其他模型,从而为交通网络资源的合理配置提供科学决策的依据。 According to the traffic flow data having nonlinear and non-stationary characteristics, the EMD and FOA algorithm were used to implement self-adaptive optimization selection of LS-SVM kernel parameters and penalty coefficient, and then a traffic flow forecasting model based on EFLS-SVM algorithm was proposed. The minutiae characteristics and trend feature of traffic flow data were extracted by EMD, and a traffic prediction model based on EFLS-SVM was built, then single- step, three-step, five-step and seven-step prediction were proceeded respectively. By comparing different experiments, the results showed that prediction accuracy and prediction efficiency of EFLS-SVM algorithm were better than other models, thus scientific decision-making basis was provided for the rational allocation of transport network resources.
作者 吴一凡
出处 《四川理工学院学报(自然科学版)》 CAS 2015年第6期29-35,共7页 Journal of Sichuan University of Science & Engineering(Natural Science Edition)
关键词 交通流量 果蝇优化算法 数学模型 最小二乘法支持向量机 traffic flow fruit fly optimization algorithm mathematical model least squares support vector machine
  • 相关文献

参考文献12

二级参考文献46

  • 1洪飞,吴志美.基于小波的多尺度网络流量预测模型[J].计算机学报,2006,29(1):166-170. 被引量:46
  • 2李捷,刘瑞新,刘先省,韩志杰.一种基于混合模型的实时网络流量预测算法[J].计算机研究与发展,2006,43(5):806-812. 被引量:18
  • 3MartinTHagan.神经网络设计[M].北京:机械工业出版社,2002.197-235.
  • 4FELDMANN A,GILBERT AC,WILLINGER W,et al.Looking behind and beyond self-similarity:Scaling phenomena in measured WAN traffic[A ].Proceedings of 35th Annual Allerton Conference on Communication,Control,and Computing[C],1997.269-280.
  • 5LELAND WE,TAQQU MS,WILLINGER W,et al.On the self-similar nature of ethernet traffic[J].IEEEE/ACM Transaction on Networking,1994,2(1):1-15.
  • 6WILLINGER W,TAQQU MS,SHERMAN R,et al.Self-Similarity Through High-Variability:Statistical analysis of ethernet LAN traffic at the source level[A].Proceedings of the ACM S IGCOMM'95[C],1995.
  • 7HOMIK KM,STINCHCOME M,WHITE H.Multilayer feedforward network universal approximators[J].Neural Network,1989,2(2):259-366.
  • 8袁曾任.人工神经元网络及其应用[M].北京:清华大学出版社,2000.118-131.
  • 9焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1995..
  • 10KantzH.非线性时间序列分析[M].北京:清华大学出版社,2000..

共引文献97

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部