期刊文献+

具有脉冲和扩散项的Beddington–DeAngelis型功能反应捕食系统的持久性

PERMANENCE OF BEDDINGTON–DEANGELIS TYPE PREDATOR-PREY SYSTEM WITH IMPULSE AND DIFFUSION
下载PDF
导出
摘要 讨论了一类具有脉冲和扩散项的Beddington–De Angelis型功能反应捕食系统,在该系统带有齐次Neumann边界条件的情况下,借助比较定理,获得了系统有正向不变集、解的最终有界性、持久性以及捕食者灭绝的一些充分条件。 The Beddington-De Angelis type functional response predator-prey system with impulse and diffusion under homogeneous Neumann boundary conditions were investigated. Based on the upper and lower solution method and comparison theory of differential equation, some sufficient conditions were established for the existence of positively invariant set, ultimate boundedness of solutions, permanence and the extinction of the predator in this system.
作者 蒲武军
出处 《井冈山大学学报(自然科学版)》 2015年第6期24-28,70,共6页 Journal of Jinggangshan University (Natural Science)
关键词 Beddington–De Angelis型功能反应 脉冲 扩散 持久性 Beddington–De Angelis functional response impulse diffusion permanence
  • 相关文献

参考文献13

  • 1Fan M, Kuang Y. Dynamics of a nonautonomous predator-prey system with the Beddington-DeAngelis functional response[J]. Journal of Mathematical Analysis and applications, 2004,295 (1): 15 -39.
  • 2Beddington J 1L Mutual interference between parasites or predators and its effect on searching efficiency[J]. The Journal of Animal Ecology, 1975,44:331-340.
  • 3DeAngelis D L, Goldstein R A, Oheill R V. A model for tropic interaction[J]. Ecology, 1975: 881-892.
  • 4Akhraet M U, Beklioglu M, Ergenc T, et al. An impulsive ratio-dependent predator-prey system with diffusion[J]. Nonlinear Analysis: Real World Applications, 2006, 7(5): 1255-1267.
  • 5Walter W. Differential inequalities and maximum principles: theory, new methods and applications[J]. Nonlinear Analysis: Theory, Methods & Applications, 1997, 30(8): 4695-4711.
  • 6Smith L H. Dynamics of competition Lecture notes in mathernatics[M].Berlin: Springer, 1999.
  • 7Samoilenko A M, Perestyuk N A. Impulsive differential equations[M].Singapore: World Scientific,1995.
  • 8Liu X, Chen L. Global dynamics of the periodic logistic system with periodic impulsive perturbations[J]. Journal of mathematical analysis and applications, 2004, 289(1): 279-291.
  • 9谭德君.基于比率的三种群捕食系统的持续生存[J].生物数学学报,2003,18(1):50-56. 被引量:24
  • 10张正球,王志成.基于比率的三种群捕食者-食饵扩散系统的周期解[J].数学学报(中文版),2004,47(3):531-540. 被引量:37

二级参考文献45

  • 1Hsu Sze-bi, HWANG Tzy-wei. Global stability for a class of predator-prey systems[J]. SIAM J Appl Math, 1995, 55(3): 763-783.
  • 2KUANG Yang, BERETTA E. Global qualitative analysis of a ratio-dependent predator-prey system[J]. J Math Biol, 1998, 36(4):389-406.
  • 3XIAO Dong-mei, RUAN Shi-gui. Global dynamics of a ratio-dependent predator-prey system[J]. J Math Biol, 2001, 43(3): 268-290.
  • 4Hsu Sze-bi, HWANG Tzy-wei, KUANG Yang. Global analysis of the Michaelis-Menten-type ratiodependent predator-prey system[J]. J Math Biol, 2001, 42(6): 489-506.
  • 5WANG Lin-lin, LI Wan-tong. Periodic solutions and permanence for a delayed nonautonomous ratiodependent predator-prey model with Holling type functional response[J]. J Comput Appl Math, 2004, 162(2): 341-357.
  • 6LIU Xiu-xiang, HUANG Li-hong. Permanence and periodic solutions for a diffusive ratio-dependent predator-prey system[J]. Appl Math Modelling, 2009, 33(2): 683-691.
  • 7AKHMET M U, BEKLIOGLU M, ERGENC T, et al.An impulsive ratio-dependent predator-prey system with diffusion[J]. Nonlinear Anal RWA, 2006, 7(5): 1 255-1 267.
  • 8PANG P Y H, WANG Ming-xin. Qualitative analysis of a ratio-dependent predator-prey system with diffusion[J]. Proc Roy Soc Edin A, 2003, 133(4): 919-942.
  • 9DAI Bin-xiang, Su Hua, Hu Dian-wang. Periodic solution of a delayed ratio-dependent predator-prey model with monotonic functional response and impulse[J]. Nonlinear Anal, 2009, 70(1): 126-134.
  • 10HE Meng-xin, CHEN Feng-de. Dynamic behaviors of the impulsive periodic multi-species predatorprey system[J]. Comput Math Apple 2009, 57(2): 248-265.

共引文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部