摘要
讨论了一类具有脉冲和扩散项的Beddington–De Angelis型功能反应捕食系统,在该系统带有齐次Neumann边界条件的情况下,借助比较定理,获得了系统有正向不变集、解的最终有界性、持久性以及捕食者灭绝的一些充分条件。
The Beddington-De Angelis type functional response predator-prey system with impulse and diffusion under homogeneous Neumann boundary conditions were investigated. Based on the upper and lower solution method and comparison theory of differential equation, some sufficient conditions were established for the existence of positively invariant set, ultimate boundedness of solutions, permanence and the extinction of the predator in this system.
出处
《井冈山大学学报(自然科学版)》
2015年第6期24-28,70,共6页
Journal of Jinggangshan University (Natural Science)