期刊文献+

基于流形学习的图像降维算法研究

Study of Image Dimensional Reduction Algorithm Based on Manifold Learning
下载PDF
导出
摘要 传统的一维、二维图像特征提取忽略了图像的结构信息,由此带来识别精度的损失;三维和多维图像的特征提取虽然考虑了数据结构之间的彼此联系,但却带来了维数灾难,增加了计算复杂度。本文利用流形学习,在原始的数据空间中嵌入稳定的流形,从而使多维数据中的特征数据映射到流形上,发现隐含在高维数据集中人们无法感知的低维结构,在不丢失数据信息的前提下,降低原始数据的维数,从而降低计算复杂度。 One-dimensional and two-dimensional image feature extraction ignores the image structure information,which will result in the loss of recognition accuracy. Three-dimensional and multi-dimensional image feature extraction considers the links between each data structure,however it brings the curse of dimensionality,which will increase the computational complexity. Accordingly,in this paper,manifold learning is taken to embed a stable manifold in the original data space,thus the multi-dimensional data feature data can be mapped to the manifold,the invisible low-dimensional structure implicated in the high-dimensional data sets can be perceived,the original data dimension can be reduced without losing data,and thereby the computational complexity can be reduced.
作者 侯远韶
出处 《洛阳理工学院学报(自然科学版)》 2015年第4期59-62,89,共5页 Journal of Luoyang Institute of Science and Technology:Natural Science Edition
基金 国家自然科学基金:基于二维随机映射和一范数优化的有监督图像分类研究(6115200)
关键词 流形学习 特征提取 本征维数 数据挖掘 manifold learning feature extraction intrinsic dimension data mining
  • 相关文献

参考文献10

  • 1Xu Song hua, Lau F, Cheung W K, ctal. Automatic generation of artistic Chinese calligraphy [ J ]. IEEE Intelligent Systems ,2005, 20(3) :32 -39.
  • 2Shirali Gh A. A new method for quantitative assessment of resilience engineering by PCA and NT approach:A case study in a process industry[J]. Reliability Engineering & System Safety,2013,119:88 - 94.
  • 3Roweis S T, Saul L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding[ J ]. Science,2010,290 (55) :23 -26.
  • 4Zhang Zhenyue, Zha Hongyuan. Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment [ J ]. Sci Comput SIAM ,20(M ,26 ( 1 ) :319 - 338.
  • 5Li Yang. Building k-edge-connected Neighborhood Graphs for Distance-based Data Projection [ J ]. Pattern Recognition Letters, 2005,26 ( 13 ) :2015 - 2021.
  • 6Davenport M. A Theoretical Analysis of Joint Manifolds ( Technical Report TREE - 0901 ) [ J ]. Rice University ECE Department, 2009,116(24) :118 - 121.
  • 7Yang J. Two-Dimensional PCA: A New Approach to Appearance-Based Face Representation and Recognition [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2004,26 (1) :131 -137.
  • 8Hegde C M, Wakin R, Baraniuk. Random Projections for Manifold Learning [ M ]. New York:Neural Information Processing Systems NIPS,2007:641 - 648.
  • 9Baraniuk R G, Wakin M B. Random Projections of Smooth Manifolds[ R]. New York:Foundations of Computational Mathematics, 2009 : 35.
  • 10赵连伟,罗四维,赵艳敞,刘蕴辉.高维数据流形的低维嵌入及嵌入维数研究[J].软件学报,2005,16(8):1423-1430. 被引量:54

二级参考文献12

  • 1Sebastian HS, Lee DD. The manifold ways of perception. Science, 2000,290(12):2268-2269.
  • 2Roweis ST, Saul LK. Nonlinear dimensionality analysis by locally linear embedding. Science, 2000,290(12):2323-2326.
  • 3Tenenbaum JB, de Silva V, Langford JC. A global geometric framework for nonlinear dimensionality reduction. Science, 2000,290(12) :2319-2323.
  • 4Donoho DL, Grimes C. When does ISOMAP recover the natural parameterization of families of articulated images? Technical Report, 2002-27, Department of Statistics, Stanford University, 2002.
  • 5Donoho DL, Grimes C. Hessian eigenmaps: New locally linear embedding techniques for high-dimensional data. Proc. of the National Academy of Sciences, 2003,100(10):5591-5596.
  • 6Zhang CS, Wang J, Zhao NY, Zhang D. Reconstruction and analysis of multi-pose face images based on nonlinear dimensionality reduction. Pattern Recognition, 2004,37(1):325-336.
  • 7Polito M, Perona P. Grouping and dimensionality reduction by locally linear embedding. Neural Inform Process Systems, 2001,1255-1262.
  • 8Lee MD. Determining the dimensionality of multidimensional scaling models for cognitive modeling. Journal of Mathematical Psychology, 2001,45(4):149-166.
  • 9Camastra F. Data dimensionality estimation methods: A survey. Pattern Recognition, 2003,36:2945-2954.
  • 10Liu XW, Srivastavab A, Wang DL. Intrinsic generalization analysis of low dimensional representations. Neural Networks, 2003,16:537-545.

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部