期刊文献+

基于局部空间冗余视觉信息抑制的目标识别算法研究 被引量:1

Target recognition algorithm based on local spatial redundancy suppression of visual information
下载PDF
导出
摘要 针对图像中相似冗余背景造成的显著目标识别的干扰问题,提出了一种基于超像素的冗余信息抑制的显著目标检测方法。首先,引入超像素的概念,利用超像素优化的空间特征分割图像,获取图像的相似区域;其次,为消除像素间的相关性,计算超像素的香农熵来表示图像的像素信息,并据此建立图像的信息图,最后,为了更有效地去除图像中的相似信息,利用自相似性抑制方法克服冗余信息,建立高效的图像显著图。最后的仿真结果表明,所提算法与传统方法相比,不仅可以准确识别显著目标,而且可以更有效地抑制背景中的冗余信息。 A new method to recognize target of visual attention model based on superpixels and redundancy reduction is proposed, which is about the target recognition problem under the similar redundancy background. Firstly, in order to get similar rigions, the im- age is segmented based on optimized spatial feature of superpixels. Secondly, to eliminate the correlation between pixels, the Shannon entropy is considered to represent pixels information which build up the image information map. Finally, aiming at suppressing the re- peated items effectively, the redundancy of the information map is thrown away to yield the image saliency map using the self-similari- ty. Experimental results show that the proposed model is compared with the state-of-the-art saliency models, this method not only highlights the salient objects in a complex environment but also more effectively suppress the redundancy.
出处 《微型机与应用》 2016年第1期42-44,48,共4页 Microcomputer & Its Applications
关键词 显著性 冗余抑制 相似性 超像素 saliency redundancy reduction similar superpixels
  • 相关文献

参考文献13

  • 1ALEXANDER T.Computational versus psychophysical bottom-up image saliency:a comparative evaluation study[J].IEEE Transactions on Pattern Analysis and Machine intelligence,2011,33(11):2131-2146.
  • 2ITTI L,KOCH C,NIEBUR E.A model of saliency-based visual attention for rapid scene analysis[J].IEEE Tranctions on Pattern Analysis and Machine Intelligency,1998,20(11):1254-1259.
  • 3GAO D,VASCONCELOS N.Integrated learning of saliency,complex features,and object scenes[C].In Proceedings of the 2005Conference on Computer Vision and Pattern Recognition(CVPR′05),CA,USA,2005:282-287.
  • 4HOU X,ZHANG L.Saliency detection:a spectral residual approach[C].IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2007:1-8.
  • 5VISWANATH G,RQUN H,DEEPU R.Salient region detection by modeling distributions of color and orientation[C].IEEE Trans.Multimedia,2009,11(5):892-905.
  • 6BRUCE,N,TSOTSOS J.Saliency based on information maximization[C].In Proc.Advances in Neural Information Processing Systems,2005:155-162.
  • 7HAREL J,KOCH C,PERONA P.Graph-based visual saliency[C].Advances in Neural Information Processing Systems,MIT Press,Cambridge,2007:545-552.
  • 8ACHANTA R,HEMAMI S,ESTRADA F,et al.Frequency-tuned salient region detection[C].In:IEEE Conference on Computer Vision and Pattern Recognition,2009,CVPR 2009,IEEE,2009:1597-1604.
  • 9胡玉兰,赵子铭,片兆宇.高分辨雷达一维距离像的融合特征识别[J].微型机与应用,2015,34(4):52-54. 被引量:4
  • 10WU J,QI F,SHI G,et al.Non-local spatial redundancy reduction for bottom-up saliency estimation[C].Visual Communication and Image Representation,2012:1158-1166.

二级参考文献4

  • 1BOSHRA M,BHANU B.Predicting an upper bound on SAR ATR performance[C].IEEE Transactions on Aerospace and Electronic Systems,2001,37(3):876-888.
  • 2Liao Xuejun,Bao Zheng,Xing Mengdao.On the aspect sensitivity of high resolution range profiles and its reduction methods[C].The Record of IEEE2000 International Radar Conference,Washing,2000:310-315.
  • 3Du Lan,Liu Hongwei,Bao Zheng,et al.Radar HRRP target recognition based on higher order spectra[C].IEEE Transactions on Signal Processing,2005,53(7):2359-2368.
  • 4田华,石圣羽,宗晓萍.基于不变矩特征及BP神经网络的图像模式识别[J].河北大学学报(自然科学版),2008,28(2):214-217. 被引量:12

共引文献3

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部