期刊文献+

振动信号无线传输压缩算法的能效分析 被引量:2

Energy-Efficient Analysis of Compression Algorithm in Vibration Signal Wireless Transmission
下载PDF
导出
摘要 通过传感器节点采集设备振动信号,借助无线网络传输技术将大量的振动数据传送到数据处理和信号分析中心。通常采用数据压缩算法来减少数据传输量,一方面减少了数据传输量,同时也增加了节点的能量消耗,因此,对于能量有限的节点来说必须考虑这两者之间的能量平衡问题。根据振动信号特点,研究了振动传感器节点的能效评估方法,对两种典型的数据压缩算法结合硬件环境进行了能效评估。研究结果表明,采用压缩算法减少了传输数据量的同时,数据处理能耗也增加了,因此必须选择合适的压缩算法来平衡好两者之间的关系。可以采用有损压缩算法在保留振动数据有用信号的同时又滤除噪声,获得较好的能量效率。 The vibration signal of equipment can be acquired by the sensor nodes.With the aid of wireless network,mass of vibration signals will be transmitted to data processing and signal analysis center.To reduce the data volume,some kinds of data compression algorithms usually be adopted.On the one hand,data compression can reduce the data volume;on the other hand,it also increases the energy consumption of sensor nodes.Therefore,energy balance between the two sides must be considered for the energy limited sensor nodes.According to the characteristics of vibration signal and the hardware environment,this paper studies the energy efficiency evaluation method of the nodes and applies this method to evaluating two typical compression algorithms.The results show that compression algorithm reduces the data volume,but energy consumption of data processing increases at the same time,so an appropriate algorithm must be adopted to balance the relationship of two sides.Because the vibration data contains lots of noise,lossy compression algorithm can be used to retain the useful signal and filter out noise at the same time,then a better energy efficiency will be acquired.
出处 《电力与能源》 2015年第6期818-821,共4页 Power & Energy
关键词 振动信号 无线传输 数据压缩 能效分析 vibration signal wireless transmission data compression energy-efficiency analysis
  • 相关文献

参考文献8

  • 1任学军,房鼎益.一种适合无线传感器网络的混合编码数据压缩算法[J].小型微型计算机系统,2011,32(6):1055-1058. 被引量:4
  • 2SACALEANU D I, STO1AN R, OFRIM D M, et al. Compression scheme for increasing the lifetime of wireless intelligent sensor networks[C]. Proceeding of the 20th European Signal Processing Conference, 2012: 709-713.
  • 3L1 De-ying, CHEN Wen-ping, HUO Rui-long, et al. Survey on energy efficiency in wireless sensor networks [J]. IEEE Signal Processing Magazine, 2002, 19(2) : 40- 50.
  • 4SADLER C M, MARTONOSI M. Data compression al- gorithms for energy-constrained devices in delay tolerant networks[C]. Proceeding of the 4th international confer- ence on Embedded networked sensor systems. 2006 : 265- 278.
  • 5ZHANG H, FAN X, LIU S, et al, Design and realization of improved LZW algorithm for wireless sensor networks [C]. International Conference on Information Science and Technology, 2011: 671-675.
  • 6SADLER C M, MARTONOSI M. Data compression algo- rithms for energy-constrained devices in delay tolerant networks[J]. Proe. SenSys'06: 4th Int. Conference on Embedded networked sensor systems, 2006, 265-278.
  • 7刘政,狄佳.一种自适应Huffman算法在无线传感器网络数据压缩中的应用[J].重庆理工大学学报(自然科学),2013,27(2):84-88. 被引量:6
  • 8KOLO J G, ANG L M, SHANMUGAM S A, et al. A simple data compression algorithm for wireless sensor networks[M]. Soft Computing Models in Industrial and Environmental Applications. Springer Berlin Heidelberg, 2013.

二级参考文献11

  • 1方敏,秦晓新,刘本喜.动态哈夫曼编码的数据压缩方法[J].计算机世界月刊,1994(7):29-33. 被引量:3
  • 2严剑.Huffman算法及其在数据压缩中的应用[J].计算机与现代化,1996(4):15-19. 被引量:4
  • 3张凤林,刘思峰.Huffman~*:一个改进的Huffman数据压缩算法[J].计算机工程与应用,2007,43(2):73-74. 被引量:19
  • 4Croce S, Marcelloni F, Vecchio M. Reducing power consumption in wireless sensor networks using a novel approach to data aggregation[ J]. The Computer J. ,2008,51 (2) :227-239.
  • 5Sadler C M, Martonosi M. Data compression clgorithms for energy-constrained devices in delay tolerant networks [ C ]//Proc. SenSys: 4th Int. Conference on Embedded networked sensor systems. USA: [ s. n. ], 2006:265 -278.
  • 6Akyildiz I F, Su W, Y, et al. Wire- less Sensor Networks : a survey [ J ]. Computer Networks, 2002,38 : 393 - 422.
  • 7Barr K C, Asanovic K. Energy-aware lossless data com- pression[ J ]. ACM Transactions on Computer Systems, 2006,24(3) :250-291.
  • 8Akyildiz I F, Vuran M C, Akan A B. On exploiting spatialand temporal correlation in Wireless Sensor Networks [ C ]//Proceedings of WiOpt 2004 : Modeling and Optimi- zation in Mobile, Ad Hoc and Wireless Networks. USA: [s.n. ] ,2004.
  • 9Lin M B, Lee J F, Jan G E. A lossless data compression and decompression algorithm and its hardware architec- ture[ J ]. IEEE Trans. Very Large Scale Imegrat Syst, 2004,14- :925 - 936.
  • 10Marcelloni F, Vecchio M. A simple algorithm for data Compression in wireless sensor networks [ J ]. IEEE Com- mun Lett,2008,12:411 - 413.

共引文献8

同被引文献22

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部