期刊文献+

成本约束的表决冗余系统可靠度优化与分配 被引量:4

Reliability-redundancy optimization and allocation of voting system under cost constraint
原文传递
导出
摘要 在成本限制下,为使系统的可靠度最大,系统采用表决冗余结构,并对具有表决冗余结构的系统可靠度和冗余度同时进行优化和分配,优化方法采用增广拉格朗日乘子法和鱼群算法相结合的混合算法;不仅分析了成本与可靠度的关系,同时讨论了表决器失效率对系统可靠度的影响;最后,以某型飞机的纵向俯仰运动飞行控制系统为例,仿真说明了在成本约束下,为使系统可靠度尽可能高,系统采用四余度配置更合理,且在只有单个表决条件下,应选取可靠度尽可能高的表决器.为避免单个表决器失效对系统可靠度的影响,实际系统中常选择多表决器冗余结构. Voting-redundancy structure was adopted in a system to maximize the system reliability under the cost constraint. With the combination of the augmented Lagrangian multiplier method and the fish swarm algorithm,a hybrid method was employed to optimize and allocate the system reliability and redundancies. In the meanwhile,the relationship between the reliability and the cost was not only analyzed,but also the impact of the voter failure rate on the system reliability was discussed. Finally,simulation results based on the longitudinal pitch motion flight control system of a certain type aircraft verify that the quaternion configuration is more appropriate to maintain an optimal system reliability taking into account the cost limit. In addition,in the case of a single voter,the voter reliability should be selected as high as possible. Most of the actual project systems select more voters redundancies structure to avoid the impact of single voter failure on the system reliability.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2014年第12期1747-1753,共7页 Journal of Beijing University of Aeronautics and Astronautics
基金 航空科学基金资助项目(20125853035) 国家973计划资助项目(20126131890302)
关键词 可靠度 冗余度 表决器 增广拉格朗日乘子法 鱼群算法 reliability redundancy voters augmented Lagrangian multiplier method fish swarm algorithm
  • 相关文献

参考文献5

二级参考文献42

  • 1Gurzi J. Estimates for best placement of voters in a triplicated logic network[J]. Electronic Computers, 1965, 14(5): 711-717.
  • 2Edmonds, Larry D. SRAM FPGA reliability analysis for harsh radiation environments[J]. IEEE Transactions on Nuclear Science, Dec. 2009, 56(6): 3519 - 3526.
  • 3Carmichael C, Caffrey M, Salazar A. Correcting single- event upsets through Virtex partial configuration[R]. Xilinx Corporation, June 1, 2000, XAPP216 (vl.0).
  • 4Edmonds, Larry D. Analysis of single-event upset rates in triple-modular redundancy devices [R]. Pasadena, CA: Jet Propulsion Laboratory, National Aeronautics and Space Administration, 2009.
  • 5McMurtrey D, Morgan K, Pratt B, et ac. Estimating TMR reliability on FPGAs using Markov models[EB/OL]. [2006-10-05]. http://contentdm.lib.byu.edu/u?/lR,612.
  • 6Pratt B, Caffrey M, Gibelyou D, et al. TMR with more frequent voting for improved FPGA reliability[EB/OL]. [2008-10-09]. Brigham Young University, 2008. http://www.et.byu.edu/-dsgib/papers/pratt_tmr_2008.pdf.
  • 7周明 孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1998..
  • 8GOEL L, OU Yan. Reliability worth assessment in radial distribution systems using the Monte Carlo simulation technique [J]. Electr Power Syst Res, 1999,51:43-53.
  • 9SU Chingtzong, LII Guorrurng. Reliability planning for composite electric power systems [J] . Electr Power Syst Res, 1999,51:23-31.
  • 10PAINTON L, CAMPBELL J. Genetic algorithms in optimization of system reliability[J]. IEEE Trans Reliability, 1995, 44(2):172-178.

共引文献11

同被引文献35

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部