期刊文献+

矿化明胶静电纺丝诱导牙周组织成骨的有效性 被引量:3

Effectiveness of mineralized gelatin electrostatic spinning on inducing periodontal tissue osteogenesis
下载PDF
导出
摘要 背景:当前国内外关于矿化明胶电纺丝纤维对牙周组织成骨诱导有效性的文献较少。目的:观察矿化明胶静电纺丝对牙周膜成纤维细胞增殖及向成骨方面分化的影响。方法:将人牙周膜成纤维细胞分别与未矿化明胶静电纺丝、纳米羟基磷灰石矿化1 d的明胶静电纺丝、纳米羟基磷灰石矿化5 d的明胶静电纺丝复合培养,采用MTT法检测培养1,4,7,10,13 d的细胞增殖;应用生化仪检测培养1,7,14 d的细胞碱性磷酸酶活性。结果与结论:培养10 d时,矿化明胶静电纺丝膜组表面的牙周膜细胞分布均匀,生长良好,铺展成片状并分泌大量细胞外基质,细胞与材料结合紧密,且以矿化5 d组效果更明显,细胞生长密度和状态优于未矿化明胶静电纺丝膜组。不同时间点的细胞增殖活性与碱性磷酸酶活性:矿化5 d明胶静电纺丝膜组>矿化1 d明胶静电纺丝膜组>未矿化明胶静电纺丝膜组(P均<0.05)。表明经纳米羟基磷灰石矿化的明胶静电纺丝,可促进牙周膜成纤维细胞增殖及向成骨方向分化,且矿化时间越长效果越明显。 BACKGROUND:Currently, little is reported regarding the effectiveness of mineralized gelatin electrostatic spinning fibers on periodontal tissue osteogenic induction. OBJECTIVE: To investigate the effect of mineralized gelatin electrostatic spinning on the proliferation and osteogenic differentiation of periodontal ligament fibroblasts. METHODS: Human periodontal ligament fibroblasts were respectively compositely cultured with non-mineralized gelatin electrostatic spinning, gelatin electrostatic spinning after 1 day of nano-hydroxyapatite mineralization and gelatin electrostatic spinning after 5 days of nano-hydroxyapatite mineralization. Cel proliferation was determined at 1, 4, 7, 10 and 13 days of culture using MTT assay. Alkaline phosphatase activity of cels was determined at 1, 7, 14 days of culture using biochemical analyzer. RESULTS AND CONCLUSION:At the 10th day of culture, the periodontal ligament cels on the surface of membrane distributed uniformly, grew wel, spread out as sheets and secreted a large amount of extracelular matrix, linked closely with the materialsl; moreover, the effect was more obvious at 5 days of mineralization. Cel growth density and status were better than those in the non-mineralized gelatin electrostatic spinning membrane group. Cel proliferation and alkaline phosphatase activities at different time points: 5-day mineralized gelatin electrostatic spinning membrane group 〉 1-day mineralized gelatin electrostatic spinning membrane group 〉 non-mineralized gelatin electrostatic spinning fibers group (alP 〈 0.05). These results demonstrate that the gelatin electrostatic spinning after nano-hydroxyapatite mineralization may promote the proliferation and osteogenic differentiation of periodontal ligament fibroblasts in a time-dependent manner.
出处 《中国组织工程研究》 CAS 北大核心 2015年第47期7583-7588,共6页 Chinese Journal of Tissue Engineering Research
  • 相关文献

参考文献38

  • 1Schwarz F, Ferrari D,Podolsky L,et al.lnitial pattern of angiogenesis and bone formation following lateral ridge augmentation using rhPDGF and guided bone regeneration; an immunohistochemical study in dogs. Clin Oral Implants Res.2010;21 (1): 90-99.
  • 2Asamura S,Mochizuki Y, Yamamoto M,et al.Bone regeneration using a bone morphogenetic protein-2 saturated slow-release gelatin hydrogel sheet,evaluation in a canine orbital floor fracture model.Ann Plast Surg.2010; 64(4):496-502.
  • 3Pourebrahim N,Hashemibeni B,Shahnaseri S,et al. A comparison of tissue-engineered bone from adipose-derived stem cell with autogenous bone repair in maxillary alveolar cleft model in dogs.lnt J Oral Maxillofac Surg. 2013;42(5): 562~568.
  • 4Van Hout WM, Mink van der Molen AB,Breugem CC,et al.Reconstruction of the alveolar cleft: can growth factor-aided tissue engineering replace autologQus bone grafting A literature review and systematic review of results obtained with bone morphogenetic protein-2.ClinOral Investig.2011; 15(3):297-303.
  • 5Mourino V, Boccaccini AR.Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds.J R Soc Interface.2010;7(43):209-227.
  • 6Wang Z,Ho PC.A nanocapsular combinatorial sequential drug delivery system for antiangiogenesis and anticancer activities. Biomaterials.2010;31 (27):7115-7123.
  • 7Kim S,Kang Y, Krueger CA,et al.Sequential delivery of BMP-2 and IGF-1 using a chitosan gel with gelatin microspheres enhances early osteoblastic differentiation.Acta Biomaterialia. 2012;8(5): 1768-1777.
  • 8Wang L,Huang Y, Pan K,et aI.Osteogenic responses to different concentrations/ratios of BMP-2 and bFGF in bone formation.Ann Biomed Eng.2010;38(1):77-87.
  • 9Nie H,Dong Z,Arifin DY, et al.Core/shell microspheres via coaxial electtohydrodynamic atomization for sequential and parallel release of drugs. J Biomed Mater Res A.2010;95(3): 709-716.
  • 10左奕,李玉宝.纳米骨修复生物材料研究进展[J].东南大学学报(医学版),2011,30(1):82-91. 被引量:8

二级参考文献40

  • 1Jie WEI, Yubao LI, Yi ZUO, Xueling PENG and Li ZHANGResearch Center for Nano-Biomaterials, Sichuan University, Chengdu 610064, China.Development of Biomimetic Needle-like Apatite Nanocrystals by a Simple New Method[J].Journal of Materials Science & Technology,2004,20(6):665-667. 被引量:2
  • 2Nair MB, Suresh Babu S, Varma HK, et al. A triphasic ceramic-coated porous hydroxyapatite for tissue engineering application[ J]. Acta Biomater, 2008, 4(1) : 173 - 181.
  • 3Kim BS, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering [ J ]. Trends Biotechnol, 1998, 16 ( 5 ) :224 - 230.
  • 4Zhang Kuihua, Qian Yongfang, Wang Hongsheng, et al. Electrospun silk fibroin-hydroxybutyl chitosan nanofibrous scaffolds to biomimic extracellular matrix [ J ]. J Biomater Sci Polym Ed,2011, 22(8) :1069 - 1082.
  • 5Chen Jingdi, Yu Qifeng, Zhang Guodong, et al. Preparation and biocompatibility of nanohybrid scaffolds by in situ homogeneous formation of nano hydroxyapatite from biopolymer polyelectrolyte complex for bone repair applications [ J ]. Colloids Surf B Biointerfaces, 2012, 93 : 100 - 107.
  • 6Shalumon KT, Binulal NS, Selvamurugan N, et al. Electrospining of carboxymethyl chitin/poly ( vinyl alcohol ) nanofibrous scaffolds for tissue engineering applications [ J ]. Carbohydrate Polymers, 2009, 77 (4) : 863 - 869.
  • 7Shi Xinfeng, Sitharaman B, Pham QP, et al. Fabrication of porous ultra-short single-waned carbon nanotube nanocomposite scaffolds for bone tissue engineering[ J]. Biomaterials, 2007, 28(28):4078 -4090.
  • 8Li Bing, Yoshii T, Hafeman AE, et al. The effects of rhBMP-2 released from biodegradable polyurethane/microsphere composite scaffolds on new bone formation in rat femora[ J]. Biomaterials, 2009, 30(35) :6768 -6779.
  • 9Dai Chenglong, Guo Han, Lu Jingxiong, et al. Osteogenic evaluation of calcium/magnesium- doped mesoporous silica scaffold with incorporation of rhBMP-2 by synchrotron radiation- based μCT[ J ]. Biomaterials, 2011, 32 (33) :8506 - 8517.
  • 10Clarke SA, Hoskins NL, Jordan GR, et al. Healing of an ulnar defect using a proprietary TCP bone graft substitute, JAX, in association with autologous osteogenic cells and growth factors [J]. Bone, 2007 ,40(4):939-947.

共引文献16

同被引文献19

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部