摘要
为探求分数阶混沌系统的混合投影同步的实现机理,基于一类新的分数阶混沌系统和Lyapunov稳定性理论,采用线性反馈控制方法将系统的混沌运动状态控制到稳定态,系统达到控制目标时,控制增益只需要满足线性矩阵不等式,且控制策略简洁易于实现。并将结论应用到投影同步中,得到了分数阶混沌系统实现混合投影同步的控制增益的必要条件。通过Matlab数值仿真,分析了不同的投影因子矩阵情形下的混沌同步,验证了控制策略与同步方法的可行性。
The mechanism of the hybrid projective synchronization of a new fractional-order chaotic system on the basis of the Lyapunov stability theory is explored. By the method of linear feedback control, chaotic states are controlled to the stable states and the crita for control gain are derived. The control gain matrix only needs to stat- isfy the condition of the linear matrix inequality and the method is easy to implement. The results are also applied to the projective synchronization of a new fractional-order chaotic system and a necessary condition for control gain to achieve the hybrid projective synchronization is obtained. Finally, the chaotic synchronization with different projective matrix is analyzed and the feasibility of control strategy and synchronization method is verified via MAT- LAB numerical simulation.
出处
《东华理工大学学报(自然科学版)》
CAS
2015年第4期454-457,共4页
Journal of East China University of Technology(Natural Science)
基金
国家自然科学基金项目(61304162)
三峡大学科研启动基金(KJ2012B075)
关键词
反馈控制
分数阶混沌系统
混合投影同步
LYAPUNOV
稳定性
渐近稳定
feedback control
fractional-order chaotic system
hybrid projective synchroniztion
Lyapunov sta-bility
asymptotic stability