期刊文献+

不完全乔列斯基分解共轭梯度法在磁感应成像三维有限元正问题中的应用 被引量:2

Incomplete Cholesky Conjugate Gradient Method for the Threedimensional Forward Problem in Magnetic Induction Tomography Using Finite Element Method
下载PDF
导出
摘要 磁感应成像(MIT)3维正问题中,直接求解法计算有限元方程组时,计算速度慢且因舍入误差造成计算结果不正确。该文为了解决这一问题,采用不完全乔列斯基分解共轭梯度(ICCG)迭代求解法。基于ANSYS平台建立有限元数值模型,采用ICCG法迭代求解。通过仿真实验获得设定收敛容差的最优值。对仿真结果进行对比,与直接求解法、雅克比共轭梯度(JCG)法相比,ICCG法计算速度快、稳健性高。计算结果表明ICCG法受网格粗细影响小,能够正确求解磁感应成像3维正问题。 In 3D forward problem of Magnetic Induction Tomography(MIT), the problems are slow computation speeds and incorrect results due to round-off errors, when calculating the finite element equations with the direct method. Incomplete Cholesky Conjugate Gradient(ICCG) iteration method is used to solve these problems. Round-off errors are compensated by iteration method. An Finite-Element Model(FEM) is built based on the ANSYS software. The FEM equations are solved by the ICCG method. The optimal convergence tolerance value is calculated. Simulation result shows that the ICCG method has advantages in speed and stability compared with direct and Jacobi Conjugate Gradient(JCG) method. The results show that the ICCG method is not affected by meshing perturbation, it can solve the 3D forward problem of MIT correctly.
出处 《电子与信息学报》 EI CSCD 北大核心 2016年第1期187-194,共8页 Journal of Electronics & Information Technology
基金 中央高校基本科研业务费专项(N130404004)~~
关键词 磁感应成像 不完全乔列斯基分解共轭梯度法 3维正问题 有限元法 Magnetic Induction Tomography(MIT) Incomplete Cholesky Conjugate Gradient(ICCG) method Three-dimensional forward problem Finite Element Method(FEM)
  • 相关文献

参考文献20

  • 1WEI H Y and SOLEIMANI M. Electromagnetic tomography for medical and industrial applications: challenges and opportunities[J]. Proceedings of the IEEE, 2013, 101(3): 559-565.
  • 2LU Ma, HUNT Andy, and SOLEIMANI M. Experimental evaluation of conductive flow imaging using magnetic induction tomography[J]. International Journal of Multiphase Flow, 2015, 72: 198-209.
  • 3JIN Gui, SUN Jian, QIN Mingxin, et al. A new method for detecting cerebral hemorrhage in rabbits by magnetic inductive phase shift[J]. Biosensors and Bioelectronics, 2014, 52: 374-378.
  • 4王雷,刘锐岗,周伟,董秀珍.磁感应断层成像硬件系统与实验的研究进展[J].医疗卫生装备,2013,34(2):85-88. 被引量:4
  • 5DARRER B J, WATSON J C, BARTLETT P, et al. Toward an automated setup for magnetic induction tomography[J]. IEEE Transactions on Magnetics, 2015, 51(1): 6500104.
  • 6MERWA R, HOLLAUS K, BRANDSTATTER B, et al. Volumetric magnetic induction tomography[J]. Measurement Science and Technology, 2012, 23(5): 055401.
  • 7MERWA R, HOLLAUS K, BRANDSTATTER B, et al. Numerical solution of the general 3D eddy current problem for magnetic induction tomography (spectroscopy)[J]. Physiological Measurement, 2003, 24: 545-554.
  • 8HOLLAUS K, MAC, MERWA R, et al. Numerical simulation of the eddy current problem in magnetic induction tomography for biomedical applications by edge elements[J]. IEEE Transactions on Magnetics, 2004, 40(2): 623-626.
  • 9刘国强,王涛,蒙萌,王浩.用棱单元方法求解磁感应成像的正问题[J].中国生物医学工程学报,2006,25(2):163-165. 被引量:7
  • 10何为,宋晓栋,张晓勇,范昭勇,罗海军,徐征.正弦均匀磁场激励磁感应成像正问题的棱单元法[J].重庆大学学报(自然科学版),2012,35(10):159-164. 被引量:1

二级参考文献61

共引文献54

同被引文献15

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部