摘要
舍入不确定度是快速傅里叶算法不确定度评估中的一个重要来源。将表示成向量矩阵的FFT算法分解为稀疏矩阵,以此确定信号传递流图,从而得出舍入不确定度在每一级的传递形式。再利用GUM中的B类方法对其进行评定,评定时假设舍入测量不确定度为均匀分布,通过对FFT算法中基-2算法的舍入不确定度进行评定,最终经过算法传递后得到其舍人不确定度的结果,在此基础上建立了FFT舍入测量不确定度的通用评估方法。
Round-off uncertainty is an important source of the uncertainty evaluation for fast Fourier transform algorithm. The fast Fourier transform algorithm expression is transformed into vector matrix, then the matrix will decompose into sparse matrix, So the signal flow graph will determine and round-off uncertainty in every level of the transmission form will be obtained. Assuming round-off uncertainty distribution as uniform distribution, then the round-off uncertainty of radix-2FFT by type B evaluation of GUM can he evaluated, finally the values of round-off uncertainty after passing through the algorithm will be obtained. Based on this, a unified method for the evaluation of the uncertainty of FFT can be established.
出处
《计量学报》
CSCD
北大核心
2016年第1期105-108,共4页
Acta Metrologica Sinica
基金
国家自然科学基金(51275310)
上海市教育委员会科技创新项目(13YZ121)
关键词
计量学
舍入不确定度
稀疏矩阵
B类评定
metrology
round-off uncertainty
sparse matrix
type B evaluation of GUM