期刊文献+

基于GA的自适应最稀疏时频分析方法及应用 被引量:4

Adaptive and Sparsest Time-frequency Analysis Method Based on Genetic Algorithm and Its Applications
下载PDF
导出
摘要 为解决自适应最稀疏时频分析(ASTFA)方法中初始相位函数的选择问题,采用遗传算法(GA)对ASTFA的初始相位函数进行优化,提出了GA-ASTFA方法。进一步研究了GA-ASTFA方法抑制模态混淆的能力,分析结果表明,GA-ASTFA能较好地抑制模态混淆,分解得到的分量信号精度高,且可抑制分解中的伪分量。最后将GA-ASTFA方法用于转子碰摩故障诊断,实验分析结果表明,GA-ASTFA方法能有效提取转子碰摩故障特征信息。 To solve the choice of initial phase function, ASTFA method was proposed herein based on GA. The initial phase function of ASTFA was optimized by GA. The ability of avoiding mode mixing was studied. The analysis shows that the GA-ASTFA method has the ability of avoiding mode mixing and can suppress the pseudo components. And the component's accuracy decomposed via GA-ASTFA is better. Finally, the GA-ASTFA was applied to rub-impact fault diagnosis in rotor systems. Experimental analyses show that the GA-ASTFA method can extract the fault feature information effectively.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2016年第1期66-72,共7页 China Mechanical Engineering
基金 国家自然科学基金资助项目(51375152)
关键词 遗传算法 自适应最稀疏时频分析 经验模态分解 模态混淆 转子碰摩 genetic algorithm (GA) adaptive and sparsest time-frequency analysis (ASTFA) empirical mode decomposition(EMD) mode mixing rub-impact fault
  • 相关文献

参考文献12

  • 1程军圣,于德介,杨宇.EMD方法在转子局部碰摩故障诊断中的应用[J].振动.测试与诊断,2006,26(1):24-27. 被引量:46
  • 2Huang N E,Shen Z,Long S R.The Empirical Mode Decomposition and the Hilbert Spectrum for Non- linear and Non-stationary Time Series Analysis[J]. Proceedings of the Royal Society A, 1998,454: 903- 995.
  • 3高云超,桑恩方,许继友.分离EMD中混叠模态的新方法[J].哈尔滨工程大学学报,2008,29(9):963-966. 被引量:16
  • 4Wu Z, Huang N E. Ensemble Empirical Mode De- composition;a Noise Assisted Data Analysis Meth- od[J]. Advances in Adaptive Data Analysis, 2009,1 (1) :1-41.
  • 5Chu P C, Fan C, Huang N E. Compact Empirical Mode Decomposition: An Algorithm to Reduce Mode Mixing, End Effect, and Detrend Uncertainty [J]. Advances in Adaptive Data Analysis, 2012,4 (3) : 1-18.
  • 6郑近德,程军圣,曾鸣,罗颂荣.基于伪极值点假设的经验模态分解及其在转子故障诊断中的应用[J].中国机械工程,2014,25(18):2467-2472. 被引量:7
  • 7杨宇,曾鸣,程军圣.局部特征尺度分解方法及其分解能力研究[J].振动工程学报,2012,25(5):602-609. 被引量:38
  • 8Rilling G,Flandrin P. One or Two Frequencies? The Empirical Mode Decomposition Answers[J]. IEEE Trans. Signal Processing, 2008,56 (1) :85-95.
  • 9Hou T Y, Shi Z Q. Adaptive Data Analysis via Sparse Time- frequency Representation [J]. Ad vances in Adaptive Data Analysis, 2011,3 ( 1 / 2 ) : 1- 28.
  • 10Hou T Y, Shi Z Q. Data-driven Time-frequency Analysis[J]. Applied and Computational Harmon- ic Analysis,2013,35(2) :284-308.

二级参考文献35

  • 1沈国际,陶利民,陈仲生.多频信号经验模态分解的理论研究及应用[J].振动工程学报,2005,18(1):91-94. 被引量:34
  • 2卢文秀,褚福磊.转子系统碰摩故障的实验研究[J].清华大学学报(自然科学版),2005,45(5):614-617. 被引量:22
  • 3徐冠雷,王孝通,徐晓刚,秦绪佳,朱涛.多分量到单分量可用EMD分解的条件及判据[J].自然科学进展,2006,16(10):1356-1360. 被引量:26
  • 4宋立新,王祁,王玉静,梁堃.具有间断事件检测和分离的经验模态分解方法[J].哈尔滨工程大学学报,2007,28(2):178-182. 被引量:11
  • 5Huang N E,Shen Z,Long S R.The Empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proc.R.Soc.Lond.A,1998 (454):903-995.
  • 6HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition method and the Hilbert spectrum for non-stationary time series analysis [ J ]. Proc R Soc Lond A, 1998(454) : 903-995.
  • 7HUNAG N E, SHEN Z, LONG S R. A new view of nonlinear water waves: the Hilbert spectrum [ J]. Ann Rev Fluid Mech, 1999, 31 : 417-457.
  • 8WU Zhaohua, HUNAG N E. Ensemble empirical mode decomposition: a noise assisted data analysis method [ R ]. Calverton : Center for Ocean-Land-Atmosphere Studies, 2005.
  • 9LI Helong, YANG Lihua, HUANG Daren. The study of the intermittency test filtering character of Hilbert-Huang transform [ J]. Mathematics and Computers in Simulation, 2005, 70: 22-32.
  • 10KAISER F J. On a simple algorithm to calculate the energy of a signal [ C ] // 1990 International Conference on Acoustics, Speech, and Signal Processing (ICASSP-90). New Mexico,USA, 1990( 1 ) :381-384.

共引文献102

同被引文献22

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部