期刊文献+

基于无监督特征学习的手势识别方法 被引量:9

A Gesture Recognition Research Based on Unsupervised Feature Learning
下载PDF
导出
摘要 针对静态手势图像的分类识别问题,提出了一种将无监督的特征学习和有监督的分类识别相结合的静态手势图像识别方法,通过无监督的稀疏自编码神经网络训练图像小块提取手势图像的边缘特征,并将此边缘特征作为训练分类器的输入,最后提出对训练好的分类器的参数进行调优从而提高准确率. In order to solve static gesture image classification problems,the paper presents a unsupervised learning process combining the static supervised classification.According to the unsupervised sparse auto-encoder neural network,the image patches were trained to extract the edge feature of the image,and these edge features are the input of a classifier,and finally.And the classifier parameter was used to improve the classification accuracy.
出处 《微电子学与计算机》 CSCD 北大核心 2016年第1期100-103,共4页 Microelectronics & Computer
关键词 无监督的特征学习 稀疏自编码神经网络 边缘特征 调优 unsupervised learning sparse auto-encoder neural network edge feature tuning
  • 相关文献

参考文献6

  • 1Liwicki S,Everingham M. Automatic recognition offingerspelled words in british sign language [Cj //Computer Vision and Pattern Recognition Workshops,IEEE Compute Society Conference on IEEE. [s. 1.].IEEE, 2009:50-57.
  • 2Geetha M,Rohit Menon,Suranya Jayan, et al. Ges-ture recognition for american sign language with poly-gon approximation [C] // 2011 IEEE InternationalConference on Technology for Education* Chengal ?Tamil Nadu:IEEE,2011:241-245.
  • 3Isaacs J,Foo S. Hand pose estimation for americansign language recognition [C]// InSystem Theory,2004. Proceedings of the Thirty-Sixth SoutheasternSymposium on. [s. 1. ] : IEEE, 2004 : 132-136.
  • 4Uebersax D,Gall J,Van den Bergh M, et al. Real-time sign language letter and word recognition fromdepth datal32 - 1362011 [C]// IEEE InternationalConference on Computer Vision Workshops (ICCVWorkshops). Chennai,Tamil Nada: IEEE, 2011 :383-390.
  • 5王勇,赵俭辉,章登义,叶威.基于稀疏自编码深度神经网络的林火图像分类[J].计算机工程与应用,2014,50(24):173-177. 被引量:34
  • 6张勤,赵健,孙道达,胡江华,冯宁.一种基于稀疏表示的手势识别算法[J].西北大学学报(自然科学版),2013,43(6):881-884. 被引量:3

二级参考文献16

  • 1DARDAS N H, NICOLAS D G. Real-time hand gesture detection and recognition using bag-of-features and sup- port vector machine techniques [ J ]. IEEE Transactions on Instrumentation and Measurement, 2011, 60 (11) : 3592-3607.
  • 2WRIGHT J, GANESH A, YANG A, et al. Robust face recognition via sparse representation [ J ]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 2009, 31(2) :210-227.
  • 3SUKA H, SINB B, LEE S. Hand gesture recognition based on dynamic Bayesian network framework [ J ]. Pat- tern Recognition, 2010, 43 (9) :3059-3072.
  • 4EMMANUEL J C, ROMBERG J K, TAO T. Stable sig- nal recovery from incomplete and inaccurate measure- ments [ J ]. Communications on pure and applied mathe- matics, 2006, 59 (8) : 1207-1223.
  • 5EMMANUEL J C, ELDARB Y C, NEEDELLA D, et al. Compressed sensing with coherent and redundant dictiona- ries[J]. Applied and Computational Harmonic Analysis, 2011, 31(1) :59-?5.
  • 6YIN J, LIU Z, JIN Z, et al. Kernel sparse representation based classification[ J]. Neurocomputing, 2012, 77 ( 1 ) : 120-128.
  • 7AURELIE M, FUCHS J, GUILLEMOT C, et al. Sparse representations for spatial prediction and texture refine- ment[ J ]. J Visual Communication and Image Represen- tation,2011, 22(8) :712-720.
  • 8胡昭华,宋耀良.基于一种连续自编码网络的图像降维和重构[J].数据采集与处理,2010,25(3):318-323. 被引量:9
  • 9马宗方,程咏梅,潘泉,王慧琴,杨娜娟.基于快速支持向量机的图像型火灾探测算法[J].计算机应用研究,2010,27(10):3985-3987. 被引量:15
  • 10李文生,解梅,姚琼.基于Laguerre正交基神经网络的动态手势识别[J].南京大学学报(自然科学版),2011,47(5):515-523. 被引量:4

共引文献35

同被引文献64

引证文献9

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部