期刊文献+

基于无人机的深基坑施工安全风险巡视与预警研究 被引量:20

Research on UAV-based Remote Monitoring for Risks of Deep Foundation Excavation Construction
下载PDF
导出
摘要 为了解决深基坑施工由于安全监控不力、纠偏措施不及时而发生安全事故的问题,提出了依托无人机飞行平台,利用视频监控进行现场巡视、信息采集、指令传达及应急处理,并结合构建的风险控制清单,实现深基坑施工无人机安全巡逻与预警。通过已有研究与事故统计分析进行深基坑风险识别和风险等级划分,确定了无人机安全监控拟监控项目表。根据视觉传达理论设计指令传达与声光报警规则,根据云平台理念设计系统操作平台,进而建立了远程自动监控预警系统。同时,结合无人机的优势制订了详细的应急救援流程以实现深基坑事故救援的可视化,提升救援效率与质量。以武汉轨道交通6号线苗栗路站为例进行案例分析,应用结果表明该方法能实现对深基坑施工现场的远程自动风险采集、分析,有效传达纠偏指令和进行安全预警响应,并在紧急情况发生后帮助应急处理小组传达救援指令和疏散人员,实现深基坑施工风险远程自动化实时管控的目的。 In order to solve the poor security monitoring of construction,this paper presents a video surveillance system based on unmanned aircraft flying platform. The system can communicate in real-time corrective instructions and emergency rescue commands. Firstly,according to the requirements of remote video surveillance,this paper intends to design the proposed monitoring program table. Then,according to the theory of visual communication,design ways to convey instructions and audible alarm rules. This paper develops a detailed emergency response procedures to ensure the safety of deep foundation excavation construction. Taking Miaoli Road Station as an example,the results showed that this method can complete the task of information collection,conveying corrective instructions and safety warnings effectively. Furthermore,this method offers assistance in the event of emergencies. In conclusion,the method can complete the tasks of remote automated real-time monitoring.
出处 《施工技术》 CAS 北大核心 2016年第1期14-19,37,共7页 Construction Technology
基金 国家自然科学基金青年基金项目:基于复杂网络理论的地铁盾构施工诱发环境风险的时空演化机理与规律研究(51408245)
关键词 深基坑 无人机 安全巡视 预警响应 应急救援 deep foundation excavation UAV safety tour early warning emergency rescue
  • 相关文献

参考文献5

  • 1洪宇,龚建华,胡社荣,黄明祥.无人机遥感影像获取及后续处理探讨[J].遥感技术与应用,2008,23(4):462-466. 被引量:88
  • 2Juan Jest~s Roldan. Mini-UAV based sensory system for measuring environmental variables in greenhouses [ J 1. Sensor, 2015 ( 15 ) : 3334-3350.
  • 3FENG Quanlong, LIU Jiantao. Urban flood mapping based on unmanned aerial vehicle remote sensing and random forest classifier--a case of Yuyao, China [ J ]. Water, 2015 (7) : 1437-1455.
  • 4MA Lei, CHENG Liang. Training set size, scale, and features in geographic hbject-based image analysis of very high resolution unmanned aerial vehicle imagery [J]. ISPRS Journal of Photogrammetry and Remote Sensing,2015,102 : 14-27.
  • 5王冠林.基于激光探测和图像识别的无人直升机地形跟踪方法:中国,101968353A[P].2011-02-.09.

二级参考文献9

共引文献87

同被引文献183

引证文献20

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部