摘要
An easy-to-implement yet practical single-camera microscopic stereo-digital image correlation(stereo-DIC) technique is proposed for surface three-dimensional(3D) deformation measurement of singe lap joint(SLJ) samples subjected to mechanical loads. The basic principles, optical configurations and implementation procedures of the proposed technique are described in detail. Compared with existing single-camera 2D-DIC technique, which has been regularly used for in-plane deformation measurement of a SLJ specimen, the proposed technique offers the special merit of simultaneously determining all the three displacement components by simply adding two additional optical elements to existing single-camera 2D-DIC systems. The accuracy and effectiveness of the proposed technique is demonstrated by measuring the 3D deformation of a SLJ specimen subjected to quasi-static tensile loads.
An easy-to-implement yet practical single-camera microscopic stereo-digital image correlation (stereo-DIC) technique is pro- posed for surface three-dimensional (3D) deformation measurement of singe lap joint (SLJ) samples subjected to mechanical loads. The basic principles, optical configurations and implementation procedures of the proposed technique are described in detail. Compared with existing single-camera 2D-DIC technique, which has been regularly used for in-plane deformation measurement of a SLJ specimen, the proposed technique offers the special merit of simultaneously determining all the three displacement components by simply adding two additional optical elements to existing single-camera 2D-DIC systems. The accuracy and effectiveness of the proposed technique is demonstrated by measuring the 3D deformation of a SLJ specimen subjected to quasi-static tensile loads.
基金
supported by the National Natural Science Foundation of China(Grant Nos.11272032
11322220 and 11427802)
the Program for New Century Excellent Talents in University(Grant No.NCET-12-0023)
the Science Fund of State Key Laboratory of Automotive Safety and Energy(Grant No.KF14032)
Beijing Nova Program(Grant No.xx2014B034)