期刊文献+

The Fulde-Ferrell-Larkin-Ovchinnikov states in s and d-wave superconductor with spin-dependent bandwidth imbalance on square lattice

The Fulde-Ferrell-Larkin-Ovchinnikov states in s and d-wave superconductor with spin-dependent bandwidth imbalance on square lattice
原文传递
导出
摘要 We study numerically the phase diagram for s and d-wave fermionic superftuidity/superconductivity with spin-dependent band- width imbalance on a two-dimensional square-lattice. We also investigate the spontaneous space symmetry breaking states at low temperatures by solving the Bogoliubov-de Gennes equations. It is found that, the spatial configuration of the order parameter, both the uni-directional Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states and the two-dimensional FFLO state may show up in the presence of finite spin-dependent bandwidth imbalance. Moreover, we calculate the spectra of local density of states, and the experimental proposals of observing such FFLO states are therefore suggested. We study numerically the phase diagram for s and d-wave fermionic superfluidity/superconductivity with spin-dependent bandwidth imbalance on a two-dimensional square-lattice. We also investigate the spontaneous space symmetry breaking states at low temperatures by solving the Bogoliubov-de Gennes equations. It is found that, the spatial configuration of the order parameter,both the uni-directional Fulde-Ferrell-Larkin-Ovchinnikov(FFLO) states and the two-dimensional FFLO state may show up in the presence of finite spin-dependent bandwidth imbalance. Moreover, we calculate the spectra of local density of states, and the experimental proposals of observing such FFLO states are therefore suggested.
出处 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2016年第1期92-97,共6页 中国科学:物理学、力学、天文学(英文版)
基金 supported by the National Key Basic Research Program of China(Grant No.2012CB921604) the National Natural Science Foundation of China(Grant Nos.11274069 and 11474064)
关键词 FFLO state SUPERCONDUCTIVITY SUPERFLUIDITY 自旋相关 频带宽度 不平衡 超导体 d波 格子 状态
  • 相关文献

参考文献22

  • 1F. Fulde, and R. A. Ferrell, Phys. Rev. 135, A550 (1964).
  • 2A. I. Larkin, and Y. N. Ovchinnikov, Soy. Phys. JETP 20, 762 (1965).
  • 3H. A. Radovan, N. A. Fortune, T. E Murphy, S. T. Hannahs, E. C. Palm, S. W. Tozer, and D. Hall, Nature 425, 51 (2003).
  • 4A. Bianchi, R. Movshovich, C. Capan, E G. Pagliuso, and J. L. Sarrao, Phys. Rev. Lett. 91, 187004 (2003).
  • 5Y. Matsuda, and H. Shimahara, J. Phys. Soc. Jpn. 6, 051005 (2007).
  • 6M. A. Tanatar, T. Ishiguro, H. Tanaka, and H. Kobayashi, Phys. Rev. B 66, 134503 (2002).
  • 7S. Uji, T. Terashima, M. Nishimura, Y. Takahide, T. Konoike, K. Enomoto, H. Cui, H. Kobayashi, A. Tanaka, M. Tokumoto, E. S. Choi, T. Tokumoto, D. Graf, and J. S. Brooks, Phys. Rev. Lett. 97, 157001 (2006).
  • 8Y. Chen, Z. D. Wang, F. C. Zhang, and C. S. Ting, Phys. Rev. B 79, 054512 (2009).
  • 9M. W. Zwierlein, A, Schirotzek, C. H, Schunck, and W, Ketterle, Sci- ence 311,492 (2006).
  • 10G. B. Partridge, W. Li, R. I. Kamar, Y. Liao, and R. G. Hulet, Science 311, 503 (2006).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部