期刊文献+

GA优化T-S模糊神经网络的干燥窑温湿度控制器设计 被引量:4

Design of T-S Fuzzy Neural Network Controller by Optimized GA for Temperature and Humidity in Drying Kiln
下载PDF
导出
摘要 为了准确控制木材干燥过程的温度和湿度,提高木材干燥质量,结合模糊控制、神经网络和遗传算法的优点,设计了一种遗传算法(GA)优化的T-S模糊神经网络温湿度控制器。该控制器利用模糊算法解除木材干燥窑内温度和湿度间的强耦合关系,采用神经网络的自学习和自适应能力实现整个非线性过程的模糊逻辑推理,并通过遗传算法对神经网络的参数进行优化与训练,提高系统的自学习和自适应能力。仿真实验结果表明,在木材干燥过程的温湿度控制上,GA优化的T-S型模糊神经网络控制器具有良好的控制效果,控制器响应速度快、超调小并且具有一定的鲁棒性。 Wood drying process normally maintains the non-linear characteristics of strong coupling and large lagging,therefore,it is hardly to build the mathematical model of controlled object. In order to control the temperature and humidity of the wood drying process more precisely,and to improve the drying quality,a T-S fuzzy neural network( FNN) controller was designed to control the inner temperature and humidity of wood drying kiln. The design combined the merits of fuzzy control,neural control and optimized genetic algorithm( GA). This controller used fuzzy algorithm to remove the coupling relationship between inner temperature and humidity of wood drying kiln. Self-learning and adaptive ability of neural network were used to accomplish the fuzzy logic of the whole non-linear process; and the parameters of neural network was optimized and trained by GA to improve the self-learning and adaptive ability of the system. The simulation results revealed that the T-S FNN controller could have better control effect,faster responding speed,lower overshoot and stronger robustness.
出处 《实验室研究与探索》 CAS 北大核心 2015年第11期54-59,共6页 Research and Exploration In Laboratory
基金 国家林业公益性行业科研专项(201304502)
关键词 干燥过程 遗传算法 T-S模型 模糊神经网络控制器 干燥窑 drying process genetic algorithm Takagi-Sugeno model fuzzy neural network controller drying kiln
  • 相关文献

参考文献16

二级参考文献123

共引文献91

同被引文献37

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部