期刊文献+

引入外点剔除机制的双波段红外图像的配准 被引量:5

Dual-band infrared image registration with the introduction of outliers rejection mechanism
原文传递
导出
摘要 为实现双波段红外图像的精确配准,针对云层背景红外光谱辐射特性不一致、采用不同传感器等原因导致大量外点存在的情况,提出了一种引入外点剔除机制的异源图像配准方法。先利用稠密SIFT流对外点进行鲁棒性估计,然后以归一化相关系数作为代价函数,采用基于梯度的方法实现了双波段红外图像的精确配准。实验结果显示,通过剔除外点的方法,能使配准参数快速收敛于全局最优,对相关性较差的双波段红外图像仍能保持较高的配准精度。 Considering the existence of a large number of outliers caused by the difference of infrared spectral radiation properties of cloud background and using different sensors, a new multi-modal registration method with the introduction of outliers rejection mechanism was proposed in order to realize the accurate registration of dual band infrared images. First, outliers was robustly estimated by computing dense SIFT flow. Then, through gradient based framework with the cost function of normalized correlation coefficient the accurate registration of dual band infrared images was achieved. Experimental results show that the registration parameters can converge to the global optimization fleetly after the rejection of outliers, and the algorithm can still maintain high registration accuracy to dual band infrared images with poor correlation.
出处 《红外与激光工程》 EI CSCD 北大核心 2015年第B12期23-28,共6页 Infrared and Laser Engineering
基金 安徽省自然科学基金(1308085QF122)
关键词 双波段 图像配准 SIFT流 外点剔除 全局最优 dual-band image registration SIFT flow outliers rejection global optimization
  • 相关文献

参考文献8

  • 1Kim Y S, Lee J H, Ra J B. Multi-sensor image registration based on intensity and edge orientation information[J]. Pattem Recognition, 2008, 41(11): 3356-3365.
  • 2赵春阳,赵怀慈,赵刚.基于相位一致性的异源图像匹配方法[J].激光与红外,2014,44(10):1174-1178. 被引量:3
  • 3Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 4Jaechul Kim, Ce Liu, Fei Sha, et al. Deformable spatial pyramid matching for fast dense correspondences[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2013.
  • 5Georgios D Evangelidis, Emmanouil Z Psarakis. Parametric image alignment using enhanced correlation coefficient maximization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(10): 1-8.
  • 6Felzenszwalb P, Huttenlocher D. Efficient belief propagation for early vision[J]. IJCV, 2006, 70(1): 41-54.
  • 7VLFeat Open Source Library. http://www. Vlfeat.org/.
  • 8Aguilera C, Barrera F, Lumbreras F, et al. Multispectral image feature points [J]. Sensors, 2012, 12(9): 12661-12672.

二级参考文献10

  • 1Bin Fan, Chunlei Huo, Chunhong Pan, et al. Registration of optical and SAR satellite images by exploring the spa- tial relationship of the improved SIFT [ J ]. IEEE Geosci- ence and Remote Sensing Letters, 2013, 10 ( 4 ) : 657 - 661.
  • 2C Bodensteiner, W Huebner, K Juengling, et al. Local multi-modal image matching based on self-similarity [ C]//Proceedings of 2010 IEEE 17th International Con- ference on Image Processing,2010:937 -940.
  • 3D. Lowe. Distinctive Image Features from scale-invariant keypoints[ J ]. International Journal of Computer Vision, 2004,60(2) :91 - 110.
  • 4Bay H, Tuytelaars T. SURF : speeded up robust features [ C ]//Proceeding of European Conference on Computer Vision, Berlin : Springer-Verlag ,2006:404 - 417.
  • 5Mikolajezyk K,Schmid C. A performance evaluation of lo- cal descriptors [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(10) :1615 - 1630.
  • 6P. Kovesi. Phase congruency: a low-level image invariant [ J]. Psychological research ,2000,64(2) :136 - 148.
  • 7P. Kovesi. Phase congruency detects corners and edges [ C ]. The Australian Pattern Recognition Society Confer- ence : DICTA,2003 : 309 - 318.
  • 8陈冰,赵亦工,李欣.一种新的光电成像末制导景象匹配方法[J].光学学报,2010,30(1):163-168. 被引量:12
  • 9黄杰贤,杨冬涛,龚昌来.互信息熵与区域特征结合的图像匹配研究[J].激光与红外,2013,43(1):98-103. 被引量:9
  • 10闫钧华,朱智超,孙思佳,杭谊青.基于多尺度红外与可见光图像配准研究[J].激光与红外,2013,43(3):329-333. 被引量:7

共引文献2

同被引文献37

引证文献5

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部