期刊文献+

对数变换下非平稳时间序列预测误差的解析分析 被引量:2

ANALYTICAL EXPLANATION OF FORECASTING ERRORS OF NONSTATIONARY TIME SERIES AFTER LOGARITHMIC TRANSFORM
下载PDF
导出
摘要 对数变换不仅能消除非平稳时间序列中的"长期趋势",还能明显降低"季节性"和"剩余的随机波动"的波动范围,从而降低预测的均方误差。但是高斯白噪声经过对数变换会形成一个小的非0数学期望,使得预测的平均误差略微增加。为弥补这个数学期望引起的预测平均误差,需要在预测前给出该数学期望足够准确的估计。将对数变换进行泰勒级数展开,并采用前四项进行解析分析,得出高斯白噪声经过对数变换后的数学期望和方差。这些结果明显改进了2008年Cryer和Chan使用前两项的结果。数值实验证实了该数学期望和方差计算式的准确性。采用五种模型对公路交通流预测时,可以有效解释对数变换形成的平均误差-0.5570。 Logarithmic transform not only can remove the"long-term trend"in nonstationary time series,but can also obviously reduce the fluctuation ranges of "seasonal"and "residual"stochastic fluctuation,thereby reduces the mean squared error of forecasting. However a small nonzero mathematical expectation may form after applying logarithmic transform on white Gaussian noise,this causes a slight increase in mean error of forecasting. In order to make up this forecasting mean error incurred from mathematical expectation,the mathematical expectation should be accurately estimated well enough before forecasting. By applying the Taylor series expansion on logarithmic transform and analytically explaining it with preceding four terms,the mathematical expectation and variance of white Gaussian noise after the logarithmic transform executed are derived. These results obviously improve the results of Cryer and Chan using preceding two terms in 2008.Numerical experiments confirm the accuracy of mathematical expectation and variance calculation formulas. When applying five models to forecast the highway traffic flows,it is able to explain the mean error- 0. 5570 formed by logarithmic transform.
出处 《计算机应用与软件》 CSCD 2015年第12期38-41,共4页 Computer Applications and Software
基金 天津市科委科技计划项目(13ZXCXGX40400)
关键词 非平稳时间序列 预测 对数变换 数学期望 平均误差 交通流 Nonstationary time series Forecasting Logarithmic transform Mathematical expectation Mean error Traffic flows
  • 相关文献

参考文献19

  • 1Milhoj A.Practical Time Series Analysis Using SAS[M].North Carolina:SAS Institute Inc.,2013.
  • 2Fan Jianqing,Yao Qiwei.Nonlinear Time Series:Nonparametric and Parametric Methods[M].New York:Springer-Verlag,2005.
  • 3Box G E P,Jenkins G M,Reinsel G C.Time Series Analysis:Forecasting and Control[M].New Jersey:John Wiley&Sons,Inc.,2008.
  • 4Cryer J D,Chan K S.Time series analysis:with applications in R[M].2nd ed.New York:Springer,2009.
  • 5王燕.应用时间序列分析[M].2版.北京:中国人民大学出版社,2012.
  • 6De Gooijer J G,Hyndman R J.25 years of time series forecasting[J].International Journal of Forecasting,2006,22(3):443-473.
  • 7Newbold P,Granger C W J.Experience with forecasting univariate time series and the combination of forecasts[J].Journal of the Royal Statistical Society Series A,1974,137(2):131-165.
  • 8Tsay R S.Time series and forecasting:brief history and future research[J].Journal of the American Statistical Association,2000,95(450):638-643.
  • 9Cramér H.On some classes of nonstationary stochastic processes[C]//Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability.University of California Press,Berkeley,USA,1961.Vol.II:57-78.
  • 10Yang Zhengling,Wang Teng,Duan Zhifeng,et al.Reducing forecast errors by logarithmic transformations for complex time series[C]//20122nd International Conference on Consumer Electronics,Communications and Networks(CECNet),IEEE.Three Gorges,China,2012:2761-2764.

二级参考文献50

共引文献9

同被引文献19

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部