期刊文献+

风电功率预测的新型互联网运营模式设计 被引量:20

New Internet Based Operation Pattern Design of Wind Power Forecasting System
原文传递
导出
摘要 目前我国大型并网风电场广泛开展了风电功率预测业务,但实际运营中反映出预测精度不稳定、预测系统运行/开发人员间交互性差、运维成本高等问题,现行运营模式与实际工程应用需求存在显著的差距。设计了一套风电功率预测新型互联网运营模式,对其理论基础、基本概念、核心功能进行了论述。新型运营模式一方面依托大数据技术建立新风电功率预测系统,提升风电场预测精度;另一方面建立预测服务商、风电场用户多方沟通交流的自服务平台,为专业服务平台提供用户侧反馈,促进功率预测结果的可用性。最后基于在吉林风电场群的实际应用证明了该模式在拓宽预测数据视野、提高预测精度等方面具有积极作用。 Nowadays wind power forecast is widely carried out at large grid-connected wind farms in China. There is significant gap between current operation scheme of wind power forecasting systems(WPFSs) and practical application requirements because of disadvantages in on-site situations, such as unstable forecasting accuracy, poor interaction between system operators and developers and high maintenance costs. A new operation scheme of WPFS based on energy internet was proposed with its theoretical basis, basic concepts and core functions roundly discussed. Forecasting accuracy for single wind farm could be improved with big data based WPFS(BD-WPFS), and WPFS adaptability could be promoted with newly built self-service platform, which allows user-side feedback using multi-communication between forecasting service providers and wind farm operators. Finally, advantages of the new operation scheme were validated with case study based on practical application at a wind farms in Jilin, in terms of a broader view of input data and higher forecasting accuracy.
出处 《电网技术》 EI CSCD 北大核心 2016年第1期125-131,共7页 Power System Technology
基金 国家自然科学基金重大基金项目(51190101)~~
关键词 风电功率预测 能源互联网 大数据 预测误差相关性 wind power forecast energy internet big data correlation of forecasting error
  • 相关文献

参考文献20

  • 1Global Wind Energy Council. Global wind report annual market update2014[R]. Brussels, Belgium: GWEC, 2015.
  • 2国家标准化管理委员会.GB/T19963-2011风电场接入电力系统技术规定[S].北京:国家标准化管理委员会,2011.
  • 3国家能源局.NB/T31046-2013风电功率预测系统功能规范[S].北京:国家能源局,2013.
  • 4Giebel G, Brownsword R, Kariniotakis G, et al. The state-of-the-art in short-term prediction of wind power: a literature overview[R]. Roskilde, Denmark: ANEMOS.PLUS, 2011.
  • 5Elisabeth. Performance implications of cloud computing[R]. New York, USA: IBM, 2010. M.
  • 6anyika J, Chui M, Brown B, et al. Big data: the next frontier for innovation, competition, and productivity[R]. San Francisco, USA: McKinsey Global Institute, 2011.
  • 7李根国,桂亚东,刘欣.浅谈高性能计算的地位及应用[J].计算机应用与软件,2006,23(9):3-4. 被引量:15
  • 8查亚兵,张涛,黄卓,张彦,刘宝龙,黄生俊.能源互联网关键技术分析[J].中国科学:信息科学,2014,44(6):702-713. 被引量:144
  • 9查亚兵,张涛,谭树人,黄卓,王文广.关于能源互联网的认识与思考[J].国防科技,2012,33(5):1-6. 被引量:60
  • 10董朝阳,赵俊华,文福拴,薛禹胜.从智能电网到能源互联网:基本概念与研究框架[J].电力系统自动化,2014,38(15):1-11. 被引量:763

二级参考文献105

  • 1杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 2迟永宁,刘燕华,王伟胜,陈默子,戴慧珠.风电接入对电力系统的影响[J].电网技术,2007,31(3):77-81. 被引量:500
  • 3孙凝晖."高性能计算:科学的第三种手段"[J].中国计算机学会通讯,2006,2(1):20-22.
  • 4http://www.top500.org.
  • 5杰里米.里夫金著,张体伟,孙毅宁译.第三次工业革命[M].中信出版社,2012.
  • 6Alex Q. Huang, Mariesa L.Crow, Gerald Thomas Heydt, Jim P.Zheng and Steiner J.Dale.The Future Re- newable Electric Energy Delivery and Management (FREEDM) System:The Energy Internet [J].Proceedings of the IEEE,2011,99(1).
  • 7Alex Q.Huang.Renewable Energy System Re- search and Education at the NSF FREEDM Systems Center[J].IEEE.2009.
  • 8任雪松,于秀林.多元统计分析[M].北京:中国统计出版社,2011:59-83.
  • 9Q/GDW588-2011风电功率预测功能规范[S].2011.
  • 10Giebel G, Landberg G, Kariniotakis G. State-of-the-art on methods and sottware tools for short-term, prediction of wind energy production[C]//European Wind Energy Conference & Exhibition. Madrid, Spain: IEEE, 2003: 40-47.

共引文献1023

同被引文献306

引证文献20

二级引证文献380

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部