期刊文献+

一种改进的多尺度自适应角点检测方法 被引量:2

AN IMPROVED ADAPTIVE CONNER DETECTION METHOD BASED ON CURVATURE MULTI-SCALE AND ITS APPLICATION
下载PDF
导出
摘要 现有的多尺度曲率乘积算法MSCP(Multi Scale Curvature Product)在检测过程中存在漏检和误检的现象,并且由于阈值设置不合理容易导致算法不稳定。针对以上不足,提出一种基于曲率多尺度的自适应角点检测算法AMCP(Adaptive Multi-scale Curvature Polynomial)。首先,结合尺度多项式的方法,不仅显著增强了曲率极值点的峰值,而且避免了曲率积对一些角点平滑;然后,构造局部曲率显著度LCCS(Local Corners Curvature Saliency),从而用自适应的阈值代替全局阈值,增强算法应对尺度,旋转等变化的鲁棒性;最后,提出曲率增长度的方法,通过该方法有效地区分圆角点和钝形角点。通过实验表明,AMCP算法提高了角点检测的正确率以及稳定性,相较于MSCP算法以及改进的CSS(Corner Detection Through Curvature Scale Space)算法具有更加优越的检测性能。 Current multi-scale curvature product (MSCP) algorithm has the phenomenon of missed detection and false detection in detecting process, moreover, the improper threshold setting may lead to the instability of the algorithm. In light of the above deficiencies, we proposed an adaptive muhi-scale-based corner detection algorithm (AMCP). First, we combined the multi-scale polynomial method, this not only significantly enhanced the peak of curvature extreme points ,but also prevented the smoothing on some comers by curvature product. Then we constructed the local corner's curvature saliency (LCCS) so that replaced the global threshold with adaptive threshold and thus enhanced the robustness of the algorithm when dealing with scale and rotation changes. Finally, we presented the curvature growth degree method, and effectively distinguished the round corner and obtuse corner with the method. It was demonstrated through experiment that the AMCP algorithm improved the accuracy and stability of corner detection, and had better detection performance than MSCP and the improved CSS algorithm.
出处 《计算机应用与软件》 CSCD 2016年第1期185-189,共5页 Computer Applications and Software
基金 国家自然科学基金项目(61272195) 重庆市自然科学基金项目(cstc2012jj A1699)
关键词 角点检测 AMCP 曲率 自适应阈值 Corner detection AMCP Curvature Adaptive threshold
  • 相关文献

参考文献13

  • 1Hans P M.Towards automatic visual obstacle avoidance[C]//Proceedings of the 5th international joint conference on Artificial intelligence,1977:584-584.
  • 2Harris C,Stephens M.A combined corner and edge detector[C]//Alvey vision conference,1988,15:50.
  • 3Smith S M,Brady J M.SUSAN—A new approach to low level image processing[J].International journal of computer vision,1997,23(1):45-78.
  • 4Luo S,Zhang J.Accelerating Harris Algorithm with GPU for Corner Detection[C]//Image and Graphics(ICIG),2013 Seventh International Conference on.IEEE,2013:149-153.
  • 5He W,Deng X.A modified SUSAN corner detection algorithm based on adaptive gradient threshold for remote sensing image[C]//Optoelectronics and Image Processing(ICOIP),2010 International Conference on.IEEE,2010,1:40-43.
  • 6龚爱平,陈吉,裘正军,何勇.基于改进Freeman链码的柑橘簇生区域数量判别方法[J].农业机械学报,2012,43(11):203-208. 被引量:8
  • 7Fan L,Wu Q,Ruan C,et al.A feature extraction algorithm based on 2D complexity of gabor wavelets transform for facial expression recognition[C]//Image and Signal Processing(CISP),2012 5th International Congress on.IEEE,2012:392-396.
  • 8Mokhtarian F,Suomela R.Robust image corner detection through curvature scale space[J].Pattern Analysis and Machine Intelligence,IEEE Transactions on,1998,20(12):1376-1381.
  • 9Zhang X H,Lei M,Dan Yang.Multi-scale curvature product for robust image corner detection in curvature scale space[J].Pattern Recognition Letters,2007,28(5):545-554.
  • 10孙君顶,郭启强,张兆生.基于曲率尺度空间的轮廓角点检测[J].光电工程,2009,36(7):78-82. 被引量:15

二级参考文献27

  • 1张亚静,邓烈,李民赞,赵瑞娇,何绍兰,易时来.基于图像处理的柑橘测产方法[J].农业机械学报,2009,40(S1):97-99. 被引量:18
  • 2王雅琴,高华.自然环境下水果图像分割与定位研究[J].计算机工程,2004,30(13):128-129. 被引量:22
  • 3凌云,王一鸣,孙明,张小超.基于流域算法的谷物籽粒图像分割技术[J].农业机械学报,2005,36(3):95-98. 被引量:38
  • 4张小洪,雷明,杨丹.基于多尺度曲率乘积的鲁棒图像角点检测[J].中国图象图形学报,2007,12(7):1270-1275. 被引量:21
  • 5Wang Y C, Chou J J. Automatic segmentation of touching rice kernels with an active contour model[ J]. Transactions of the ASAE, 2004, 47(5) : 1 803 - 1 811.
  • 6Mao K Z, Zhao P, Tan P H. Supervised learning-based cell image segmentation for P53 immunohistochemistry[ J]. IEEE Transactions on Biomedical Engineering, 2006, 53 (6) : 1 153 - 1 163.
  • 7Whittaker A D, Miles G E, Mitchell O R, et al. Fruit location in a partially occluded image[ J]. Transactions of the ASAE, 1987, 30(3): 591 -597.
  • 8Li S, Tan Y L. One rapid segmentation algorithm for quasi-circular fruits[ J]. Recent Advances in Computer Science and Information Engineering, 2012, 128:287 - 293.
  • 9Shen L, Song X, Manabu I, et al. A method for recognizing particles in overlapped particle images[ J]. Pattern Recogniton Letters, 2000, 21(1) : 21 -30.
  • 10Beucher S,LantuEjoul C. Use of watersheds in contour detection [ C ] //Proceedings of the International Workshop on Image Processing, Real-time Edge and Motion Detection/Estimation, Rennes, France, 1979.

共引文献21

同被引文献16

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部