期刊文献+

完全正常化缔合勒让德函数及其导数与积分的递推关系 被引量:8

Recurrence Relations for Fully Normalized Associated Legendre Functions and Their Derivatives and Integrals
原文传递
导出
摘要 在地球重力场问题中,常用到完全正常化缔合勒让德函数及其导数、积分的递推关系。当前流行的地球扰动位模型均采用完全正常化的缔合勒让德函数,用此类模型可以高效方便计算各种扰动重力场元。随着本世纪多个新一代卫星重力探测计划成功实施,高阶或超高阶地球重力场模型的研究备受学界的关注。有关完全正常化缔合勒让德函数的递推关系对于高阶重力场模型具有特别意义。本文在前人研究的基础上,用初等微积分导出了若干新的递推关系式。同时还推导了正常化缔合勒让德函数及其导数、积分的检核式,这些检核式涉及地球位的球谐级数的数学性质。 Recurrence relations for fully normalized associated Legendre functions and their derivatives and integrals are often used when studying the Earth gravity field.Fully normalized associated Legendre functions are all adopted in current popular Earth disturbance potential models make the calculations of various disturbance gravity field elements highly efficient and easy when such models and related recurrence relations are used.New generation satellite gravity exploration missions have been successfully implemented,and high or ultrahigh degree Earth gravity field models have been quickly developed.This study area has received much attention in academic community;our investigation has a special meaning as it addresses the recurrence relations of fully normalized associated Legendre functions.Building upon previous research,several new recurrence relation expressions are derived in detail based on elementary calculus as the mathematical tool for the derivation.Formulas for assessing the values of fully normalized associated Legendre functions,their derivatives,and integrals are also deduced.This study involves the mathematical properties of the spherical harmonic expansion series of the geo-potential,thus is related to fundamental theory research.
作者 魏子卿
机构地区 西安测绘研究所
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2016年第1期27-36,共10页 Geomatics and Information Science of Wuhan University
关键词 完全正常化缔合勒让德函数 导数 积分 递推关系 检核式 fully normalized associated Legendre functions derivatives integrals recurrence relations check formulas
  • 相关文献

参考文献7

  • 1Belikov M V. Spherical Harmonic Analysis and Synthesis with the Use of Column-Wise Recurrence Relations [J]. Manuscripta Geodaetica, 1991,16 384-410.
  • 2Belikov M V, K A Taybatorov. An Efficient Algo- rithm for Computing the Earth's Gravitational Po- tential and Its Derivatives at Satellite Altitudes[J]. Manuscripta Geodaetica, 1992,17 : 104-116.
  • 3Varshalovich D A, Moskalev A N, Khersonskii V K. Quantun Theory of Angular Momentum [M]. Singapore: World Scientific Publ. , 1989.
  • 4Heiskanen W, Moritz H. Physical Geodesy [M]. San Francisco:W. H. Freeman and Co. , 1967.
  • 5Paul M K. Recurrence Relations for Integrals of Associated Legendre Functions [J]. Bulletin Geodesique, 1978, 52(3) :177-190.
  • 6王建强,李建成,赵国强,朱广彬.利用Clenshaw求和计算大地水准面差距[J].武汉大学学报(信息科学版),2010,35(3):286-289. 被引量:5
  • 7田晋,暴景阳,刘雁春.全球位系数模型构建高精度局部重力场的Clenshaw求和[J].武汉大学学报(信息科学版),2005,30(10):905-908. 被引量:3

二级参考文献14

  • 1夏哲仁,石磐,李迎春.高分辨率区域重力场模型DQM2000[J].武汉大学学报(信息科学版),2003,28(S1):124-128. 被引量:23
  • 2宁津生,李建成,晁定波,管泽霖.WDM94 360阶地球重力场模型研究[J].武汉测绘科技大学学报,1994,19(4):283-291. 被引量:30
  • 3晁定波.论高精度卫星重力场模型和厘米级区域大地水准面的确定及水文学时变重力效应[J].测绘科学,2006,31(6):16-18. 被引量:8
  • 4黄谟涛 管铮 等.海洋重力测量理论方法及其应用[M].北京:海潮出版社,1997..
  • 5Pavlis N K, Holmes S A, Kenyon S C, et al. An Earth Gravitational Model to Degree 2 160: EGM2008 [C]. 2008 General Assembly of the European Geosciences Union, Vienna, Austria, 2008.
  • 6Borre K. Geoid Undulations Computed from EGM96 [J]. Science of Earth, 2004,74:355-362.
  • 7Holmes S A, Featherstone W E. A Unified Approach to Clenshaw Summation and the Recursive Computation of Very High Degree and Order Normalized Associated Legendre Functions[J]. Journal of Geodesy, 2002,76:279-299.
  • 8Tscherning C C, Poder K. Some Geodetic Application of Clenshaw Summation[J]. Boll di Geodesia Science Affini, 1982,61 : 349-375.
  • 9Heiskanen W A, Moritz H. Physical Geodesy[M]. San Francisco: Freeman and Company, 1967.
  • 10李建成 陈俊勇 宁津生.地球重力场逼近理论与中国2000似大地水准面的确定[M].武汉:武汉大学出版社,2002..

共引文献6

同被引文献37

引证文献8

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部