期刊文献+

正交压缩采样雷达偏离网格目标时延估计技术 被引量:2

Time-Delay Estimation of Off-Grid Targets for Quadrature Compressive Sampling Radar
下载PDF
导出
摘要 参数扰动正交匹配追踪是一种有效的偏离网格目标时延估计技术.但是,该方法在每次迭代时只搜索一个目标,计算量大.本文提出一类低计算量的偏离网格目标时延估计技术——参数扰动带排除贪婪重构算法.该算法在贪婪重构方法中引入带排除技术,用于检测多个与目标最邻近的离散网格,利用参数扰动技术来估计目标与最邻近离散网格之间的时延偏差.本文以正交压缩采样雷达为例,采用回溯自适应正交匹配追踪方法,研究参数扰动带排除贪婪重构算法性能.仿真实验表明,与已有的相关方法相比,该算法在不影响估计精度的情况下可减少一倍以上的计算时间. Parameter-perturbed orthogonal matching pursuit is an effective technique for estimating the rime-delays of offgrid targets.However,the technique consumes large computational loading because it only searches one target at each iteration.This paper develops a kind of low complexity methods,which is called parameter-perturbed band-excluded greedy reconstruction algorithms,to estimate the off-grid targets.The proposed technique combines the band-excluded technique and the greedy reconstruction methods to detect the nearest discrete grids of several off-grid targets and exploits the parameter-perturbed technique to estimate the time-delay bias between the off-grid targets and the nearest discrete grids.Taking the quadrature compressive sampling radar as an example,this paper studies the estimation performance of the proposed technique through the backtracking adaptive orthogonal matching pursuit method.Simulation results show that in comparison with other related methods,the proposed technique reduces the computational time more than one time without affecting estimation accuracy.
出处 《电子学报》 EI CAS CSCD 北大核心 2015年第12期2352-2359,共8页 Acta Electronica Sinica
基金 国家自然科学基金(No.61171166 No.61401210) 中国博士后科学基金(No.2014M551597) 江苏省博士后基金(No.1302077B)
关键词 压缩采样 雷达 时延估计 偏离网格目标 compressive sampling radar time-delay estimation off-grid targets
  • 相关文献

参考文献21

  • 1Donoho D L. Compressed sensing[ J]. IEEE Transactions on Information Theory,2006,52(4): 1289- 1306.
  • 2Cands E J, Tao T. Near-optimal signal recovery from random projections: universal encoding strategies? [ J]. IEEE Transac- lions on Information Theory,2006,52(12) :5406- 5425.
  • 3Laska J N, Kirolos S, et al. Random sampling for analog-to-in- formation conversion of wideband signals [ A ]. IEEE Dallas/ CAS Workshop on Design, Applications, Integration and Soft- ware[ C] .Dallas: IEEE,2006. 119 - 122.
  • 4Tropp J A, Wakin M B, et al. Random falters for compressive sampling and reconstruction[ A]. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) [ C]. Toulouse: IEEE, 2006.872 - 875.
  • 5Tropp J A,Laska J N,et al.Beyond Nyquist: efficient sampling of sparse bandlimited signals[ J]. IEEF. Transaction on Informa- tion Theory,2010,58(1) :520 - 544.
  • 6Mishali M,Eldar Y.From theory to practice: Sub-Nyquist sam- pling of sparse wideband analog signals [ J ]. IEEE Journal of Selected Topics on Signal Processing,2010,4(2):375- 391.
  • 7Xi F, Chen S Y, et al. Quadrature compressive sampling for radar signals [ J ]. 1EEE Transactions on Signal Processing, 2014,62( 11 ) : 2787 - 2802.
  • 8Liu C, Xi F, et al. Pulse-Doppler signal processing with qnadra- ture compressive sampling[ J]. IEEE Transactions on Aerospace and Electronic Systems,2015,5(2) : 1216- 1230.
  • 9HermanM A,Strohmer T.High resolution radar via compressed sensing[ J ]. IU, EF, Transactions on Signal Processing, 2009,57 (6) :2275 - 2284.
  • 10Zhang J D, Zhu D Y, et al. Adaptive compressed sensing radar oriented toward cognitive detection in dynamic sparse target scene[ J], IEEE Transactions on Signal Processing, 2012, 60 (4) : 1718 - 1729.

同被引文献7

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部