期刊文献+

基于非圆信号对阵列干扰下的最佳阵元数研究 被引量:1

Study on the Optimal Sensor Numbers under the Array Interferences Based on Non-Circular Signals
下载PDF
导出
摘要 针对理想情况下,空间谱估计算法的测向性能随阵元数目增加而提高,然而实际工程中存在通道不一致和互耦等干扰,使阵元数目与测向精度不再成正比问题,提出一种研究最佳阵元数的方法。在阵列干扰条件下,利用非圆信号的伪协方差矩阵不为零特性,基于空间谱估计算法,以测角精度和测向成功概率为指标,分别在均匀线阵和均匀圆阵下研究最佳阵元数目。通过仿真分析得出,研究不同阵列形式下的不同目标个数的最佳阵元数目,对抗干扰至关重要。 The problem that the direction finding performance of spatial spectrum estimation algorithm increases with the increase of sensor numbers in ideal situation,however channel disaccord and mutual coupling interferences that exist in the actual project,leading to the sensor numbers is no longer proportional to the direction finding precision,a method to study the optimal sensor numbers is proposed.Under the condition of array interferences,using the characteristics of non-circular signals' pseudo-covariance matrix is not zero,according to the index of angle measuring accuracy and direction finding success probability,the optimal sensor numbers in uniform linear array and uniform circular array are studied based on spatial spectrum estimation algorithm,respectively. Through the simulation analysis,it is concluded that the study on optimal sensor numbers of different target numbers in different array forms is crucial for anti-interference.
作者 禹芳 司伟建
出处 《航空兵器》 2015年第6期3-7,13,共6页 Aero Weaponry
基金 航空科学基金项目(201401P6001)
关键词 阵列干扰 非圆信号 最佳阵元数 波达方向估计 array interferences non-circular signals the optimal sensor numbers direction of arrival(DOA)
  • 相关文献

参考文献12

二级参考文献64

  • 1林敏,龚铮权.超分辨测向中模型误差的校正[J].无线电工程,2001,31(z1):53-56. 被引量:1
  • 2周庆辉,许宗泽,靳学明.一种改进的ESPRIT测向算法[J].雷达科学与技术,2005,3(3):148-151. 被引量:3
  • 3贾永康,保铮,吴洹.一种阵列天线阵元位置、幅度及相位误差的有源校正方法[J].电子学报,1996,24(3):47-52. 被引量:74
  • 4See C. Method for array calibration in high resolution sensor array processing[J]. IEE Proceedings Radar, Sonar and Navigation, 1995,142(3):90-96.
  • 5See C. Sensor array calibration using a maximum likelihood approach[J]. IEEE Trans onAP, 1996, 44 (6): 827-835.
  • 6Leshem A, Wax M. Array calibration in the presence of multipath[J]. IEEE Trans. SP, 2000,48(1) : 53 - 59.
  • 7Paulraj A, Kailath T. Direction of arrival estimation by eigen-structure methods with unknown sensor gain and phase[C]//Proceedings IEEE Intenlational Conference on Acoustic, Speech, Signal Processing, 1985 : 640 - 643.
  • 8Weiss A J, Friedlander B. Eigenstrueture methods for direction finding with sensor gain and phase uncertainties[C]//Proceedings IEEE Inteniational Conference on Acoustic, Speech, Signal Processing, 1985 : 2681 - 2684.
  • 9Hong J. Genetic approach to bearing estimation with sensor location uncertainties[J]. Electronics Letters, 1994,29 (23) : 2013 - 2014.
  • 10Schmidt R O. Multiple emitter location and signal parameter estimation [ J]. IEEE Trans AP, 1986,34(3):276- 280.

共引文献46

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部