期刊文献+

基于KPLS数据重构的非线性过程监测与故障辨识

Nonlinear process monitoring and fault detection based on data reconstruction using KPLS
下载PDF
导出
摘要 为适应快速变化的化工产品需求,过程工业逐步向柔性生产发展,使得间歇过程的应用日益广泛。这一类工艺过程具有动态和非线性的特征,过程故障带来的工艺波动和安全风险是较为突出的挑战。采用基于核函数的偏最小二乘方法,在高维特征空间提取特征变量,这些变量包含了生产过程的非线性结构特征,也反应了过程工况的模式特征。针对传统线性方法存在的故障漏报等问题,利用核函数技巧,在特征空间进行数据重构,进而计算统计监控指标SPE,并通过对SPE的在线监测实现更加有效地故障辨识。本方法针对标准非线性测试对象进行了过程监测,实现结果充分说明了方法的有效性。 In this paper,a new nonlinear process monitoring technique based on kernel partial least squares( KPLS) is developed. KPLS has emerged in recent years as a promising regression method for tackling nonlinear systems,such as batch processes. KPLS can effectively capture the nonlinear relationship in the process variables and is potentially suitable for monitoring nonlinear process disturbances. To resolve the fault missing problem of the traditional linear methods,a simple approach of calculating the squared prediction error( SPE) based on data reconstruction in the feature space is suggested. Based on SPE charts in the feature space,KPLS was applied to fault detection in Tennessee Eastman benchmark process. The proposed approach showed superior performance in process monitoring and quality variables prediction compared to the conventional PLS methods.
作者 刘毅
出处 《中国安全生产科学技术》 CAS CSCD 北大核心 2015年第12期93-98,共6页 Journal of Safety Science and Technology
基金 国家科技支撑计划项目(2015BAK16B04)
关键词 故障辨识 核偏最小二乘 多变量统计过程控制 非线性统计过程控制 fault detection kernel partial least square MSPC nonlinear SPC
  • 相关文献

参考文献18

  • 1Macgregor J F, Kourti T. Statistical process control of multivariate process[J]. Control Engineering Practice, 1995, 3(3): 403-414.
  • 2张玉良,张贝克,马昕,曹柳林.一种新的基于图模型的间歇过程故障监测方法[J].中国安全生产科学技术,2014,10(6):164-170. 被引量:1
  • 3魏利军,关磊,吴宗之.重大危险源安全监控系统运行模式分析与探讨[J].中国安全生产科学技术,2006,2(5):37-40. 被引量:22
  • 4Geladi P, Kowalski B R. Partial least-squares regression: a tutorial[J]. Anal. Chem. Acta, 1986, 185: 1-17.
  • 5Kourti T. Application of latent variable methods to process control and multivariate statistical process control in industry[J]. International Journal of Adaptive Control and Signal Processing, 2005, 19(4): 213-246.
  • 6Qin S J, Mcavoy T J. Nonlinear PLS Modeling Using Neural Network[J]. Computers & Chemical Engineering, 1992, 16(4): 379-391.
  • 7Malthouse E C, Tamhane A C, Mah R S H. Non-linear partial least squares[J]. Computer and Chemical Engineering, 1997, 21(8): 875-890.
  • 8VAPNIK V N.统计学习理论[M].许建华,张学工,译.北京:电子工业出版社,2004.
  • 9Scholkopf B, Smola A J. Learning with kernels - support vector machines, regularization, optimization and beyond[M]. Cambridge, MA: MIT Press 2002.
  • 10王桂增, 叶昊. 主元分析与偏最小二乘法[M]. 北京: 清华大学出版社, 2012.

二级参考文献42

共引文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部