期刊文献+

基于粗糙特征量的短期电力负荷预测 被引量:11

Short-term Load Forecasting Based on Rough Characteristic-component Algorithm
下载PDF
导出
摘要 针对负荷特征一直是实际电力负荷预测中的重大问题。提出了基于粗糙特征量的约简算法。通过对天气及负荷历史数据进行挖掘,找到负荷的关键特征,并与径向基网络结合建立了负荷预测模型。算例结果表明,与按经验选取输入的传统网络相比,预测准确度有了明显的提高,更适用于电力负荷预测。 The key characteristic of mining influence the load is always an important problem in power load forecasting. A reduction algorithm through rough characteristic-component algorithm is introduced. The key characteristics of the date of weather and history load data are discussed,and then a model combined with radical basis function neural network is established. Forecasting results of calculation examples show that the forecasting accuracy is obviously improved and more suitable for short-term load forecasting compared with traditional radical basis function neural network model that chooses input parameters in the light of experience.
出处 《电子科技》 2016年第1期40-43,共4页 Electronic Science and Technology
基金 国家自然科学基金资助项目(6120576) 国家科技部政府间科技合作基金资助项目(2009014)
关键词 电力系统 径向基 粗糙特征量 负荷预测 power system RBF rough characteristic-component load forecasting
  • 相关文献

参考文献8

二级参考文献89

  • 1曾玲,何普彦,付敏.不完备区间值信息系统的粗糙集约简算法[J].南京理工大学学报,2013,37(4):524-529. 被引量:9
  • 2王丽娟,杨习贝,杨静宇,吴陈.基于多粒度理论的不完备决策规则获取[J].南京理工大学学报,2013,37(1):12-18. 被引量:2
  • 3俞秋阳,朱斌,郭伟.基于RBF神经网络的短期负荷预测模型设计[J].继电器,2004,32(17):34-37. 被引量:10
  • 4叶健,葛临东,吴月娴.一种优化的RBF神经网络在调制识别中的应用[J].自动化学报,2007,33(6):652-654. 被引量:32
  • 5Chen S, Wang X X, Brown D J. Sparse incremental regression modeling using correlation criterion with boosting search. IEEE Signal Processing Letters, 2005, 12(3): 198-201.
  • 6Chen S, Wolfgang A, Harris C J, Hanzo L. Symmetric RBF classifier for nonlinear detection in multiple-antenna-aided systems. IEEE Transactions on Neural Networks, 2008, 19(5): 737-745.
  • 7Conzalez J, Rojas I, Ortega J, Pomares H, Fernandez F J, Diaz A F. Multi-objective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation. IEEE Transactions on Neural Networks, 2003, 14(6): 1478-1495.
  • 8Leung F H F, Lam H K, Ling S H, Tam P K S. Tuning of the structure and parameters of a neural network using an improved genetic algorithm. IEEE Transactions on Neural Networks, 2003, 14(1): 79-88.
  • 9Bors A G, Pitas I. Median radial basis function neural network. IEEE Transactions on Neural Networks, 1996, 7(6): 1351-1364.
  • 10Yin H, Allinson N M. Self-organizing mixture networks for probability density estimation. IEEE Transactions on Neural Networks, 2001, 12(2): 405-411.

共引文献584

同被引文献88

引证文献11

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部