期刊文献+

基于距离度量学习的半监督多视角谱聚类算法 被引量:2

A Semi-supervised Multiview Spectral Clustering Algorithm Based on Distance Metric Learning
下载PDF
导出
摘要 为了有效利用少量先验信息提高多视角数据聚类效果,提出一种基于距离度量学习的半监督多视角谱聚类算法(简称ML-SMC)。首先,利用距离度量学习引入先验信息,将多视角数据映射到反映先验约束条件的空间。然后,根据相似性构造每个视角的视图,将多视角聚类问题转化为最小正则割的图划分问题。实验结果表明,MLSMC算法聚类结果的精度优于3种经典的多视角聚类算法和4种半监督单视角聚类算法。并且通过利用少量先验信息ML-SMC算法能够有效提高聚类效果。 In order to take the advantage of prior knowledge to improve clustering performance,based on distance metric learning( MLSMC),a semi-supervised multi-view spectral clustering algorithm was proposed. The prior knowledge was incorporated into clustering process by distance metric learning,which mapped data into a new space which subjects to prior knowledge. Each graph of views was constructed according to similarity metric,and then the problem of multi-view clustering was formulated as an optimization problem of minmum normalized cut. Experiments showed that the quality of clustering results of ML-SMC is superior to three classical multiview clustering algorithms and four semi-supervised single-view clustering algorithms,and the precision of ML-SMC could be significantly improved by incorporating some prior knowledge.
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2016年第1期146-151,共6页 Journal of Sichuan University (Engineering Science Edition)
基金 国家自然科学基金资助项目(11471001)
关键词 距离度量学习 多视角聚类 谱聚类 半监督聚类 数据挖掘 distance learning multiview clustering spectral clustering semi-supervised clustering data mining
  • 相关文献

参考文献20

  • 1Tzortzis G,Likas A. Convex mixture models for multi-view clustering [ C ]//ICANN 2009. Limassol : Springer Verlag, 2009:205 - 214.
  • 2Bickel S, Scheffer T. Multi-view clustering [ C ]//ICDM 2004. Washington : IEEE ,2004 : 19 - 26.
  • 3Chen Xiaojun,Xu Xiaofei, Huang J Z, et al. TW-k-means : Automated two-level variable weighting clustering algo- rithm for multiview data [ J ]. IEEE Transactions on Knowledge and Data Engineering, 25 (4) , 2013 : 932 - 944.
  • 4Blaschko M B,Lampert C H. Correlational spectral cluste- ring [ C ]//CVPR 2008. Anchorage : IEEE,2008 : 1 - 8.
  • 5Liu Jialu,Wang Chi, Gao Jing, et al. Multi-view clustering via joint nonnegative matrix factorization [ C]//SDM 2013. Austin : SIAM,2013 : 252 - 260.
  • 6Jiang Yu, Liu iJing, Li Zechao, et al. Collaborative PLSA for muhi-view clustering [ C ]//ICPR 2012. Tsukuba: IEEE ,2012:2997 - 3000.
  • 7Tzortzis G, Likas A. Kernel-based weighted multi-view clustering[ C ]//ICDM 2012. Brussels : IEEE, 2012 : 675 - 684.
  • 8任亚峰,姬东鸿,尹兰.基于半监督学习算法的虚假评论识别研究[J].四川大学学报(工程科学版),2014,46(3):62-69. 被引量:15
  • 9Xing E P, Ng A Y,Jordan M I,et al. Distance metric learning,with application to clustering with side informa- tion [ C ]//NIPS 2003. Cambridge : MIT,2003:505 - 512.
  • 10Kumar N, Kummamuru K. Semi-supervised clustering with metric learning using relative comparisons[ J]. IEEE Transaction on Knowledge and Data engineering,2007,20 (4) :496 - 503.

二级参考文献3

  • 1Fang Wu,Bernardo A. Huberman.Opinion formation under costly expression[J].ACM Transactions on Intelligent Systems and Technology (TIST).2010(1)
  • 2Jeffrey T. Hancock,Lauren E. Curry,Saurabh Goorha,Michael Woodworth.On Lying and Being Lied To: A Linguistic Analysis of Deception in Computer-Mediated Communication[J].Discourse Processes.2008(1)
  • 3Aldert Vrij,Samantha Mann,Susanne Kristen,Ronald P. Fisher.Cues to Deception and Ability to Detect Lies as a Function of Police Interview Styles[J].Law and Human Behavior.2007(5)

共引文献14

同被引文献22

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部