期刊文献+

基于混合进化算法优化模糊对比度的图像去雾 被引量:1

Fog removal method based on fuzzy contrast optimization using hybrid evolutionary algorithm
下载PDF
导出
摘要 将粒子群优化算法引入到图像对比度增强中,结合遗传算法全局搜索的优点,提出一种基于混合进化算法的图像模糊对比度增强方法。该算法首先将雾天图像由RGB空间转换到HSV空间,利用高斯隶属度函数模糊化图像,通过隶属度函数与渡越点距离算子定义图像的模糊对比度、模糊熵以及视觉因子,得到待优化目标函数,再通过混合进化算法选择参数,实现图像对比度变换的自适应性。采用图像质量评价函数证明了该算法的有效性。 This paper proposed a fog removal method based on fuzzy contrast optimization using hybrid evolutionary algorithm(FCOHE-FR), in which, combining with the advantages of genetic algorithm, the particle swarm optimization algorithm is introduced to the image contrast enhancement. By combining the particle swarm optimization algorithm with the genetic algorithm with hybrid evolutionary, a defogging algorithm is presented. Convert fog video from RGB space to HSV space; blur the images by using Gaussian membership function. Define image contrast, fuzzy entropy and visual factor by fuzzy membership function and crossover point distance operator to get the objective function to be optimized. Then, the hybrid evolutionary algorithm is adopted to select parameters to achieve image contrast self-adaptive transform. The effectiveness of the proposed algorithm is proved by the image quality evaluation function.
出处 《计算机时代》 2016年第1期12-18,共7页 Computer Era
基金 浙江省自然科学基金(LQ14F030014 LQ13F030012) 浙江农林大学人才启动基金(2013FR023 2013FR085) 浙江农林大学智慧农林业研究中心预研项目(2013ZHNL03) 浙江省林业智能监测与信息技术研究重点实验室开放基金
关键词 图像去雾 粒子群优化算法 遗传算法 混合进化算法 模糊对比度增强 image defogging particle swarm optimization algorithm genetic algorithm hybrid evolutionary algorithm fuzzy contrast enhancement
  • 相关文献

参考文献13

  • 1Pal S K, King R A. Image enhancement using smoothing with fuzzy sets[J].IEEE Transaction on Sys Man Cybern, 1981.11(7):494-501.
  • 2Kam Y, Hanmandlu M. An improved fuzzy image enhancement by adaptive parameter selection[J]. IEEE International Conference on Systems, Man and Cybemetics,2003.2(5-8): 2001- 2006.
  • 3Cheng H, Xu H. A novel fuzzy logic approach to contrast enhancement[J]. Pattern Recognition,2000.33(5):809-819.
  • 4Hanmandlu M, Verma, O P, Kumar N K and Kulkarni M. Anovel optimal fuzzy system for color image enhance- ment using bacterial foraging[J]. IEEE Transactions on Instrumentation and Measurement,2009.58(8):2867-2879.
  • 5Verma O P, Kumar P, Hanmandlu M, et al. High dynamic range optimal fuzzy color image enhancement using Artificial Ant Colony System[J]. Applied Soft Comput- ing,2012.12(1):394-404.
  • 6Lovbjerg M, Rasmussen T, Krink T. Hybrid particle swarm optimizer with breeding and subpopulations[C]// Proceedings of Genetic and Evolutionary Computation Conference,2001:469-476.
  • 7翟艺书,柳晓鸣,涂雅瑗.基于模糊逻辑的雾天降质图像对比度增强算法[J].计算机应用,2008,28(3):662-664. 被引量:12
  • 8翟艺书,梁媛.基于混合对比度增强的户外图像去雾方法[J].计算机仿真,2010,27(5):227-230. 被引量:1
  • 9周鲜成,申群太,王俊年.一种新的图像对比度自适应变换算法[J].科学技术与工程,2007,7(21):5575-5579. 被引量:4
  • 10白治江.基于遗传算法的模糊系统研究[D].华东师范史学,2006.

二级参考文献27

  • 1武凤霞,王章野,彭群生.最小失真意义下雾化图像复原[J].系统仿真学报,2006,18(z1):363-365. 被引量:5
  • 2王萍,张春,罗颖昕.一种雾天图像低对比度增强的快速算法[J].计算机应用,2006,26(1):152-153. 被引量:62
  • 3芮义斌,李鹏,孙锦涛.一种图像去薄雾方法[J].计算机应用,2006,26(1):154-156. 被引量:52
  • 4詹翔,周焰.一种基于局部方差的雾天图像增强方法[J].计算机应用,2007,27(2):510-512. 被引量:45
  • 5[2]Rosenfield A,Avinash C K.Digital picture processing.New York:Academic Press,1982:154-167
  • 6[3]Lukac R,Smolka B,Plataniotis K N,et al.Selection weighted vector directional filters.Computer Vision and Image Understanding,Special Issue on Colour for Image Indexing and Retrieval,to appear,2004
  • 7[4]Tubbs J D.A note on parametric image enhancement.Pattern Recognifion,1987;30(6):617-621
  • 8[6]Kennedy J,Eberhart R C.Particle Swarm Optimization.In:Proc IEEE Int' l Conf on Neural Networks,IV.Piscataway,NJ:IEEE Service Center,1995; 1942-1948
  • 9[7]Shi Y H,Eberhart R C.A modified particle swarm optimization.Proceedings of the IEEE International Conference on Evolutionary Computation.Achorage,1998 ;67-73
  • 10[8]http://mathworld.wolfram.com/RegularizedBetaFunction.html

共引文献14

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部