期刊文献+

智能机器人视觉障碍识别方法研究与仿真 被引量:2

Research and Simulation of Intelligent Robot Visual Obstacle Recognition Method
下载PDF
导出
摘要 由于智能机器人视觉系统具有非线性、时变性与强耦合性特点,引起机器人视觉避障识别率降低。且感知环境较为复杂,采用传统的方法进行障碍识别,容易发生识别错误的现象,识别效果较差。为解决上述问题,提出改进支持向量机算法的智能机器人视觉障碍识别方法。针对视觉系统采集到的原始障碍图像的噪声信息,进行中值滤波,在去除噪声的同时最大化保证了细节的完整性,依据SIFT算法理论,通过搜索空间极值点,抽取空间位置、尺度与旋转不变量,完成障碍图像的特征提取,根据改进支持向量机算法对图像特征进行分类,从而实现对视觉障碍的有效识别。实验结果表明,采用改进算法进行智能机器人视觉障碍识别,能够提高智能机器人的视觉感知能力,提高障碍识别的准确性,从而满足了智能机器人工作的实际需求。 The research of intelligent robot visual obstacle recognition method. Because of the intelligent robot vision system with nonlinear, time-varying and strong coupling characteristic, and the perception environment more complex, the traditional method is used to identify the disorder, easy to identify the error phenomenon, recognition effect is poorer. Therefore, based on improved support vector machine (SVM) algorithm of intelligent robot visual ob- stacle recognition method. For the visual system, barriers to original image noise information were collected, median filtering in removing noise of the maximum guarantee the integrity of the details at the same time, based on the theory of SIFT algorithm, through the search space is extreme value point, extract the spatial location, scale and rotation in- variant, complete obstacle image feature extraction, based on improved support vector machine (SVM) algorithm of image feature classification, so as to realize the effective recognition of the visual impairment. The experimental results show that the improved algorithm is used to .identify the intelligent robot Visual disturbances, can improve the visual perception ability of intelligent robot, improve the accuracy of obstacle recognition, and meet the actual demand of intelligent robot work.
作者 裴志松 时兵
出处 《计算机仿真》 CSCD 北大核心 2016年第1期353-356,共4页 Computer Simulation
关键词 机器人视觉 障碍识别 支持向量机算法 尺度不变特征变换 Robot vision Obstacle recognition Support vector machine (SVM) algorithm SIFT
  • 相关文献

参考文献10

二级参考文献53

  • 1赵曦,杨福兴.一种新型智能机器人控制系统设计[J].科技信息,2009(1):470-471. 被引量:2
  • 2冯培恩,邵力平,高宇,潘双夏.液压挖掘机器人多关节协调控制研究[J].中国工程机械学报,2006,4(3):253-258. 被引量:3
  • 3陈华华,杜歆,顾伟康.基于神经网络和遗传算法的机器人动态避障路径规划[J].传感技术学报,2004,17(4):551-555. 被引量:23
  • 4王子谦,薛履中.简化的模糊PID控制器研究[J].自动化仪表,2006,27(4):4-7. 被引量:2
  • 5T. LAM. Simulation of Aulomaic P.otorcr&ft Nap-of-the-E&pth Flight in Gr&phics Workstation Environment[C].AIM-92-41;31-OP.
  • 6L. MURATET, S. DONCIEUX, Y. BRIERE, and J.-A. MEYER. A Contribution to Vision-Based Autonomous Helicopter Flight in Urban Environments[J]. Robotics and Autonomous Systems, 2005, 50(4):195-209.
  • 7L. MUIRATET, S. DONCIEUX, and J.-A. MEYEE. A biomimetic reactive navigation system using the optical flow for a rotary-wing UAV in urban environment[C]. In Proceedings of the International Session on Robotics, 2004.
  • 8Duchon, A. P. Maze navigation using optical flow[C]. From animals to animats 4: Proceedings of thefourth international conference on simulation of adaptive behaviour, 1996.
  • 9SCOTT M. ETTINGER, Stability and Control for International Conference on MICHAEL C. NECHYBA. Vision-Guided Flight Micro Air Vehicles[C]. Proceeding of IEEE Robotic8 and Automacion,2002.
  • 10修艳红.嵌入式智能家居控制系统的研究[D].哈尔滨:哈尔滨理工大学硕士论文.2007:35-38.

共引文献33

同被引文献14

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部