期刊文献+

基于图像处理的设备异常检测关键技术仿真 被引量:9

Based onImage Processing Equipment of Anomaly Detection Simulation Key Technology
下载PDF
导出
摘要 由于设备异常检测过程的复杂性与技术局限性,传统人工方法进行设备异常检测时,由于没有故障样本,通常需要耗费大量人力成本和财力成本,不能解决设备本地资源的有限性问题,并且采集到的设备异常部位图像可辨识程度不高,不能对检测数据进行可视化处理,不能保证异常检测结果的可信度,进而无法上传到设备检测中心以图像的方式留存系统信息,因此无法获得满意的检测效果。为此,提出基于智能化图像处理的设备异常检测方法。针对采集的原始设备故障识别度不高的缺陷,通过图像灰度化处理、灰度拉伸和中值滤波等方法对图像进行预处理,提高设备异常检测的图像质量,为图像检索和提高设备异常检测效率提供技术支持,依据相关原理进行图像特征分解提取,并结合一定的匹配机制对图像进行相似度匹配,根据实际检测需求进行特征权重调整,获得较为准确的检测结果,以实现设备的有效异常检测。实验结果表明,采用改进算法进行设备的异常检测,能够提高设备检测系统运行的效率保证检测的准确性,满足了设备检测自动化的实际需求。 Because of the complexity of the anomaly detection process equipment and technical limitations, the traditional manual method of anomaly detection equipment, because of the lack of fault samples usually requires a lot of human and financial costs, can not solve the problem of equipment limited local resources, and collected equip- ment abnormal spot image recognition degree is not high, not to treat data visualization, cannot ensure the credibility of the anomaly detection results, it can no longer be uploaded to the equipment testing center system information is re- tained in the form of image, so we can not get satisfactory result of testing. For this, put forward equipment anomaly detection method based on intelligent image processing. For acquisition of the original defects of equipment fault rec- ognition degree is not high, through the image gray processing, gray stretch and median filtering method for image preprocessing, image quality, to improve equipment anomaly detection for image retrieval, and improve the efficiency of anomaly detection equipment to provide technical support, extract image feature decomposition according to the rel- evant principles, and combined with certain matching mechanism for image similarity matching, according to the ac- tual testing requirements in terms of feature weight adjustment, to obtain more accurate test results, in order to realize effective anomaly detection equipment. The experimental results show that the improved algorithm of anomaly detec- tion equipment, to improve the efficiency of the detection system operation, ensure the accuracy of the detection to meet the needs of the test automation equipment.
作者 胡晓宏
出处 《计算机仿真》 CSCD 北大核心 2016年第1期425-429,共5页 Computer Simulation
基金 吉林省科技厅项目(20130102030JC)
关键词 图像处理 设备检测 特征提取 相似度匹配 Image processing Equipment inspection Feature extraction Similarity matching
  • 相关文献

参考文献10

二级参考文献108

  • 1韦素云,吉根林.基于加权颜色直方图和颜色对的图像检索系统[J].南京师范大学学报(工程技术版),2005,5(1):53-56. 被引量:11
  • 2罗森林,辛子英,冯磊.基于C4.5算法的敏感图像检测方法[J].北京理工大学学报,2006,26(5):451-453. 被引量:4
  • 3JUNG Chan-ho,KIM Cahn-gick.A unified spectral-domain approach for saliency detection and its application to automatic object segmentation[J].IEEE Transactions on Image Processing,2012,21(3):1272-1283.
  • 4HAN Sung-ho,HONG Yeong-pyo,LEE Sang-hun.Applying differential techniques for 2D/3D video conversion to the objects grouped by depth information[J].Journal of The Korea Academia-Industrial Cooperation Society,2012,13(3):1302-1309.
  • 5LI Hong-liang,NGAN N.Saliency model-based face segmentation and tracking in head-and-shoulder video sequences[J].Journal of Visual Communication and Image Representation,2008,19(5):320-333.
  • 6AVRAHAM T,LINDENBAUM M.Esaliency (extended saliency):Meaningful attention using stochastic image modeling[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(4):693-708.
  • 7GUO Chen-lei,ZHANG Li-ming.A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression[J].IEEE Transactions on Image Processing,2010,19(1):185-198.
  • 8ITTI L,KOCH C,NIEBUR E.A model of saliency-based visual attention for rapid scene analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(11):1254-1259.
  • 9MA Yu-fei,ZHANG Hong-jiang,Contrast-based image attention analysis by using fuzzy growing[C]//ACM International Conference on Multimedia.New York:ACM,2003:374-381.
  • 10OUERHANI N,BUR A,HIGLI H.Linear vs.nonlinear Feature Combination for Saliency Computation:A comparison with human Vision[J].Lecture Notes in Computer Science,2006,4174:314-323.

共引文献34

同被引文献70

引证文献9

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部