期刊文献+

基于极限学习机与子空间追踪的人脸识别算法 被引量:10

Face Recognition Algorithm Based on Extreme Learning Machine and Subspace Pursuit
下载PDF
导出
摘要 极限学习机(ELM)与稀疏表示分类(SRC)算法被广泛应用于人脸识别中。ELM学习速度快,但不能很好地处理噪声图像,SRC对噪声具有鲁棒性,但计算复杂度较高。针对上述2种算法的优缺点,利用子空间追踪算法求解稀疏系数,提出一种改进的人脸识别算法,从而达到高识别率与快速的识别效果。该算法根据测试样本的ELM实际输出向量判断是否为噪声图像,干净图像直接依据ELM输出向量进行分类,噪声图像采用子空间追踪算法结合SRC框架来分类。在扩展的Yale B和ORL人脸数据库上的实验结果表明,该算法不仅识别率高,且识别速度快。 Extreme Learning Machine(ELM) and Sparse Representation based Classification(SRC) algorithm are applied to face recognition widely.ELM has speed advantage while it can not handle noise well /whereas SRC shows significant robustness to noise while it suffers high computational cost.According to the advantages and disadvantages of two algorithms,this paper proposes a hybrid approach combining extreme learning machine and Subspace Pursuit(SP) for face recognition,which incorporates their respective advantages and uses subspace pursuit method to optimize solving sparse representation coefficients in SRC.According to the analysis of ELM actual output to estimate whether the test sample is a noisy image,clean image directly uses ELM actual output to classify,and noisy image applies SP with SRC method to classify.Experimental results show that the novel algorithm has high recognition rate and speed advantage in face recognition on extended Yale B and ORL face database respectively.
出处 《计算机工程》 CAS CSCD 北大核心 2016年第1期168-173,共6页 Computer Engineering
基金 国家自然科学青年基金资助项目(61202439) 湖南省教育厅优秀青年基金资助项目(12B003) 湖南省交通运输厅科技计划基金资助项目(201334)
关键词 人脸识别 极限学习机 稀疏表示 稀疏编码 子空间追踪 face recognition Extreme Learning Machine(ELM) sparse representation sparse coding Subspace Pursuit(SP)
  • 相关文献

参考文献14

  • 1Zhao Wenyi,Chellappa R,Phillips P J,et al.Face Recognition:A Literature Survey[J].ACM Computing Surveys,2003,35(4):399-458.
  • 2Wright J,Yang A Y,Ganesh A,et al.Robust Face Recognition via Sparse Representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(2):210-227.
  • 3Yang A Y,Sastry S S,Ganesh A,et al.Fast L1-minimization Algorithms and an Application in Robust Face Recognition:A Review[C]//Proceedings of International Conference on Image Processing.Hong Kong,China:IEEE Signal Processing Society,2010:1849-1852.
  • 4Wagner A,Wright J,Ganesh A,et al.Toward a Practical Face Recognition System:Robust Alignment and Illumination by Sparse Representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(2):372-386.
  • 5Yang A Y,Zhou Z,Balasubramanian A G,et al.Fast L1-Minimization Algorithms for Robust Face Recognition [J].IEEE Transactions on Image Processing,2013,22(8):3234-3246.
  • 6Tropp J A,Gilbert A C.SignalRecovery from Random Measurements via Orthogonal Matching Pursuit[J].IEEE Transactions on Information Theory,2007,53(12):4655-4666.
  • 7Dai Wei,Milenkovic O.Subspace Pursuit for Com-pressive Sensing Signal Reconstruction[J].IEEE Transactions on Information Theory,2009,55(5):2230-2249.
  • 8杨成,冯巍,冯辉,杨涛,胡波.一种压缩采样中的稀疏度自适应子空间追踪算法[J].电子学报,2010,38(8):1914-1917. 被引量:65
  • 9Suykens J A K,Vandewalle J.LeastSquares Support Vector Machine Classifiers[J].Neural Processing Letters,1999,9(3):293-300.
  • 10Huang Guangbin,Zhu Qinyu,Siew C K.Extreme Learning Machine:Theory and Applications[J].Neurocomputing,2006,70(1):489-501.

二级参考文献37

  • 1D L Donoho.Compressed sensing[J].IEEE Trans Info Theory,2006,52(4):1289-1306.
  • 2E J Candès,J Romberg,T Tao.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J].IEEE Trans Info Theory,2006,52(2):489-509.
  • 3E J Candès,T Tao.Near-optimal signal recovery from random projections:Universal encoding strategies[J].IEEE Trans Info Theory,2006,52(12):5406-5425.
  • 4E J Candès,T Tao.Decoding by linear programming[J].IEEE Trans Info Theory,2005,51(12):4203-4215.
  • 5S S Chen,D L Donoho,M A.Saunders.Atomic decomposition by basis pursuit[J].SIAM Rev,2001,43(1):129-159.
  • 6S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.
  • 7J A Tropp.Greed is good:Algorithmic results for sparse approximation[J].IEEE Trans Info Theory,2004,50(10):2231-2242.
  • 8J A Tropp,A C Gilbert.Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Trans Info Theory,2007,53(12):4655-4666.
  • 9D L Donoho,Y Tsaig,I Drori,etc.Sparse solution of underdetermined linear equations by stagewise Orthogonal Matching Pursuit .2007,http://www-stat.stanford.edu/-donoho/Reports/2006/StOMP-20060403.pdf.
  • 10D Needell,R Vershynin.Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit .http://arxiv.org/abs/0707.4203,2007-7-28/2008-3-15.

共引文献68

同被引文献97

  • 1刘向东,陈兆乾.人脸识别技术的研究[J].计算机研究与发展,2004,41(7):1074-1080. 被引量:17
  • 2陈高曙,曾庆宁.基于LLE算法的人脸识别方法[J].计算机应用研究,2007,24(10):176-177. 被引量:12
  • 3Savran A, Alyuz N, Dibeklio~lu H, et al. Bosphorus Database for 3D Face AnalysisIM~//Schouten B,Juul N C, Drygajlo A, et al. Biometrics and Identity Management. Berlin, Germany :Springer ,2008:47-56.
  • 4Colombo A, Cusano C, Schettini R. Detection and Restoration of Occlusions for 3D Face Recognition~ C 1// Proceedings of 2006 IEEE International Conference on Multimedia and Expo. Washington D. C.,USA:IEEE Press, 2006 : 1541-1544.
  • 5Alyuz N, Gokberk B, Akarun L. 3-D Face Recognition Under Occlusion Using Masked Projection I J ~- IEEE Transactions on Information Forensics and Security, 2013,8(5) :789-802.
  • 6Li B Y L,Mian A S,Liu Wanquan,et al. Using Kinect for Face Recognition Under Varying Poses, Expressions, Illumination and Disguise I C ~//Proceedings of 2013 IEEE Workshop on Applicatior~s of Computer Vision. Washington D. C., USA : IEEE Press ,2013 : 186-I 92.
  • 7Zhao Xi, Dellandrea E, Chen Liming, et al. Accurate Landmarking of Three-dimensional Facial Data in the Presence of Facial Expressions and Occlusions Using a Three-dimensional Statistical Facial Feature Model I J 3 ~ IEEE Transactions on Systems, Man, and Cybernetics, Part B :Cybernetics ,2011,41 (5) : 1417-1428.
  • 8Li Huibin, Huang Di ,Morvan J,et al. Towards 3D Face Re- cognition in the Real:A Registration-free Approach Using Fine-grained Matching of 3D Keypoint Descriptors I J 1. International Journal of Computer Vision, 2014, 113 (2) : 128-142.
  • 9Wright J, Yang A,Ganesh A, et al. Robust Face Recogni- tion via Sparse Representation I J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009,31 ( 2 ) : 210-227,.
  • 10Chan C,Kittler J. Sparse Representation of(Multiscale) Histograms for Face Recognition Robust to Registration and Illumination Problems I C 1//Proceedings of the 17 th IEEE International Conference on Image Processing. Washington D. C., USA : IEEE Press ,2010:2441-2444.

引证文献10

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部