期刊文献+

钢渣不同矿物的加速碳化 被引量:10

Accelerated carbonation of different minerals of steel slag
下载PDF
导出
摘要 钢渣中较高的氧化钙含量赋予其较好的碳化能力。本文用QXRD(quantitatively X-ray diffraction analysis)分析了钢渣的主要矿相,并合成了β-C2S,γ-C2S,镁蔷薇辉石(Ca3Mg(Si O4)2),尖晶石(Ca4Si2O7F2),黑钙铁矿(Ca2Fe2O5),钙铁石(Ca4Al2OFe2O10)等矿物。将各矿物在8 MPa下压制成型制成20 mm×20 mm×20 mm的立方体,在99.9%CO2,0.2MPa压力下加速碳化2 h。通过QXRD,TGA(thermogravimetric analysis),FT-IR(fourier transform infrared spectrometer)和SEM(scanning electron microscope)对碳化产物进行分析。结果表明,氢氧化钙吸收二氧化碳的量最大;γ-C2S,β-C2S,镁黄长石,镁蔷薇辉石和尖晶石固碳量逐渐减少。抗压强度与固碳量并不呈正相关关系,因此提出了不同矿物碳化的比强度(K)来表征单位质量CO2提供的抗压强度。β-C2S的K值最大,氢氧化钙K值最小。钢渣吸收的CO2量,抗压强度和K值都介于单矿物之间。除了γ-C2S和镁黄长石分别存在少量的球霰石和文石,所有单矿和钢渣碳化的产物为方解石。用QXRD和TGA的方法对碳酸钙进行定量分析,QXRD所得结果稍小,可能是由于碳化产物中存在少量非晶相碳酸钙。不同矿物碳化后方解石的颗粒尺寸,形貌均不同,这也对抗压强度影响。 The high calcium content makes steel slag an excellent candidate industry waste for mineral carbonation. Minerals of steel slag were analyzed by QXRD. The main minerals, i. e. , β-C2S, γ-C2S, merwinite ( Ca3Mg( SiO4 )2 ) , cuspidine ( Ca4Si2OTF2 ) , srebrodolskite ( Ca2Fe205 ) , brownmillerite ( Ca4Al2OFe2O10 ) were synthesized. The minerals ( water/solid ratio is 0. 1 ) were compacted at 8 MPa to 20 mm x 20 mm x 20 mm and then were carbonated in a sealed chamber ( CO2 pressure is 0.2 MPa) for 2 h. The carbonated products were analyzed by QXRD, TGA, FT-IR and SEM. The results indicate that portlandite absorb the greatest amount of CO2 and the carbon sequestration of 3,-C2S, β-C2S, akermanite, merwinite and cuspidine gradually decrease. But compressive strength don't show positive correlation with Carbon sequestration capacity. Compressive strength to CO2 uptake (K) values of different minerals are defined. β-C2 S presents the greatest K value and portlandite show the least K value. The CO2 uptake, compressive strength and K value of steel slag are all between the minimum and maximum values of synthetic minerals. Calcite exists in all the carbonated minerals and steel slag. Small amount of vaterite and aragonite exist in carbonated β-CzS and akermanite, respectively. Calcium carbonate from QXRD analysis is less than that from TG analysis. Calcite with different morphologies and different crystal sizes formed, which also have influence on compressive strength.
出处 《电子显微学报》 CAS CSCD 2015年第6期464-469,共6页 Journal of Chinese Electron Microscopy Society
基金 国家自然科学基金资助项目(No.51172096) 中央高校基本科研业务费专项资金资助项目
关键词 钢渣 矿物 加速碳化 比强度 QXRD steel slag synthetic minerals, accelerated carbonation compressive strength to CO2 uptake value QXRD
  • 相关文献

参考文献13

  • 1Bonenfant D,Kharoune L,Sauve S,et al.CO2 sequestration potential of steel slags at ambient pressure and temperature [J].Industrial & Engineering Chemistry Research,2008,47(20):7610-7616.
  • 2Doucet F J.Effective CO2 specific sequestration capacity of steel slags and variability in their leaching behaviour in view of industrial mineral carbonation [J].Minerals Engineering,2010,23(3):262-269.
  • 3Dri M,Sanna A,Maroto-Valer M M.Dissolution of steel slag and recycled concrete aggregate in ammonium bisulphate for CO2 mineral carbonation [J].Fuel Processing Technology,2013,113:114-122.
  • 4Bobicki E R,Liu Q,Xu Z,et al.Carbon capture and storage using alkaline industrial wastes[J].Progress in Energy and Combustion Science,2012,38(2):302-320.
  • 5Boot-Handford M E,Abanades J C,Anthony E J,et al.Carbon capture and storage update [J].Energy & Environmental Science,2014,7(1):130-189.
  • 6Sanna A,Uibu M,Caramanna G,et al.A review of mineral carbonation technologies to sequester CO2[J].Chemical Society Reviews,2014.
  • 7Huijgen W J,Witkamp G,Comans R N.Mineral CO2 sequestration by steel slag carbonation [J].Environmental science & technology,2005,39(24):9676-9682.
  • 8Johnson D C,MacLeod C L,Carey P J,et al.Solidification of stainless steel slag by accelerated carbonation[J].Environ Technol,2003,24(6):671-678.
  • 9常钧,吴昊泽.钢渣碳化机理研究[J].硅酸盐学报,2010,38(7):1185-1190. 被引量:61
  • 10张林菊,吴昊泽,叶正茂,刘梅,丁亮,常钧.正交实验钢渣碳化工艺条件[J].济南大学学报(自然科学版),2009,23(2):127-130. 被引量:19

二级参考文献19

  • 1侯贵华,李伟峰,郭伟,陈景华,罗驹华,王京刚.转炉钢渣的显微形貌及矿物相[J].硅酸盐学报,2008,36(4):436-443. 被引量:100
  • 2冷光荣,程柏生.钢渣综合利用[J].江西冶金,2003,23(6):125-128. 被引量:14
  • 3冷光荣,朱美善.钢渣处理方法探讨与展望[J].江西冶金,2005,25(4):44-46. 被引量:28
  • 4朱桂林,孙树杉.国内外钢铁渣利用及应注意的问题[J].中国水泥,2005(10):20-21. 被引量:6
  • 5相会强,王林,刘彦君,智艳生.钢渣在建筑领域的综合利用及展望[J].中国冶金,2005,15(9):49-51. 被引量:15
  • 6Caijun Shi, Jueshi Qian. High performance cementing materials from industrial slags--a review [ J ]. Resources Conservation and Recycling ,2000,5 ( 29 ) : 195 - 207.
  • 7Lange L C, Hills C D , Poole A B, et al. Preliminary investigation into the effects of carbonation on cement - solidified hazardous wastes[ J]. Environ Sci Technol. 1997,30( 1 ) :25 - 30.
  • 8Bertos M F, Simons S J, Hills C D, et al. A review of accelerated carbonation technology in the treatment of cement - based materials and sequestration of CO2 [ J ]. Journal of Hazardous Materials. 2004,112 (3) : 193 - 205.
  • 9Macias A, Kindness A , Glasser F P. Impact of carbon dioxide on the immobilisation potential of cemented wastes: chromium [ J ]. Cem Concr Res,1997,27(2) :215 -225.
  • 10BERTOS M Femllndez, SIMONS S J R, HILLS C D, et al. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2 [J]. J Hazardous Mater, 2004, 112(1): 193-205.

共引文献77

同被引文献89

引证文献10

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部