摘要
复变函数理论被广泛地应用到空气动力学、理论物理、电子技术、热学等许多方面.文章根据K-laplace算子和K-调和函数的定义,运用偏导数的数学思想,讨论了一对共轭K-调和函数的乘积仍为K-调和函数;K-调和函数的线性组合仍是K-调和函数.同时,获得K-解析函数的虚部是此函数的实部的共轭K-调和函数,而共轭K-调和函数也可以构造K-解析函数.所得结论是解析函数与调和函数理论的应用.
The complex function theory is widely used in many aspects such as aerodynamics, theoretical physics, electronic technology. This paper is based on the definitions of K -laplace operator and K - harmonic function, uses the partial derivative in mathematics,and discusses the fact that the product of a pair of conjugate K - harmonic functions is K - harmonic func- tions, and that the linear combinations of K - Harmonic function are K - Harmonic function. At the same time,it proves that the imaginary part of K - analytic function is conjugate K - Harmonic function of real part of the K - analytic function, and that K - analytic functions are constructed by the conjugate K - Harmonic function. The conclusion is the application of analytic func- tion and harmonic function theory.
出处
《西南民族大学学报(自然科学版)》
CAS
2016年第1期92-95,共4页
Journal of Southwest Minzu University(Natural Science Edition)
基金
国家自然科学基金(11301160)
云南省自然科学基金(2013FZ116)
红河学院科研基金项目(XJ14Y05)