期刊文献+

具有周期传染率的SVEIR传染病模型的定性分析

Analysis of a SVEIR epidemic model with periodic infection rate
下载PDF
导出
摘要 研究了一类具有周期传染率的SVEIR传染病模型的动力学性态.定义了模型的基本再生数,得到了无病周期解全局稳定性的条件,讨论了系统的一致持续生存,并通过数值模拟展示了所得到的理论结果和模型复杂的动力学性态. A SVEIR epidemic model with periodic infection rate is formulated and studied.The basic reproduction number is defined,the global dynamics for disease-free periodic solution is estabished.The uniform persistence of system is also discussed.Numerical simulations are conducted to demonstrate our theoretical results and complex dynamics of the model.
作者 杜燕飞 曹慧
出处 《陕西科技大学学报(自然科学版)》 2016年第1期171-174,共4页 Journal of Shaanxi University of Science & Technology
基金 国家自然科学基金项目(11301314) 陕西省科技厅自然科学基金项目(2014JQ1025)
关键词 周期传染病模型 基本再生数 稳定性 periodic epidemic model the basic reproduction number stability
  • 相关文献

参考文献5

二级参考文献41

  • 1[1]Kermark M D. Mokendrick A G. Contributions to the mathematical theory of epidemics[J]. Part I, Proc Roy Soc, A, 1927, 115(5):700-721.
  • 2[2]Cooke K L. Stability analysis for a vector disease model[J]. Rocky Mount J Math, 1979, 9(1):31-42.
  • 3[3]Hethcote H W. Qualititative analyses of communicable disease models[J]. Math Biosci, 1976, 28(3):335-356.
  • 4[4]Capasso V. Mathematical structures of epidemic systems[J]. Lecture notes in biomath[M]. 97 Springer-verlag,1993.
  • 5[5]Hethcote H W, Liu W M, Leven S A. Dynamical behavior of epidemiological models with nonlinear incidence rates[J]. Math Biosci, 1987, 25(3):359-380.
  • 6[6]Capasso V, Serio G. A generalization of the Kermack-Mckendrick deterministic epidemic model[J]. Math Biosci, 1978, 42(1):41-61.
  • 7[7]Bailey N T J. The Mathematical Theorey of Infectious Diseases.[M]. London: Griffin, 1975.
  • 8王晓燕,杨俊元.具有Logistic增长和年龄结构的SIS模型[J].数学的实践与认识,2007,37(15):99-103. 被引量:9
  • 9P van den Driessche, James Watmough. Reproduction numbers and sub-threshold endemic equilib- ria for compartmental models of disease transmission[J]. Mathematical Biosciences, 2002, 180(1-2): 29-48.
  • 10Michat~l Y Li, James S. Muldowney. Global stability for the SEIR model in epidemiology[J]. Mathematical Biosciences, 1995, 125(2): 155-164.

共引文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部