期刊文献+

基于用户模糊相似度的协同过滤算法 被引量:31

User fuzzy similarity-based collaborative filtering recommendation algorithm
下载PDF
导出
摘要 针对离散评分不能合理表达用户观点和传统协同过滤算法存在稀疏性等问题,借鉴年龄模糊模型,提出了梯形模糊评分模型。该模型将离散评分模糊化为梯形模糊数,考虑了评分模糊性和信息量,通过梯形模糊数来计算用户相似度,据此设计了协同过滤算法,并证明了该算法是传统协同过滤算法在模糊域的扩展。实验表明,该算法在数据稀疏且用户数远多于项目数时性能突出,并且算法运行时间远小于传统协同过滤算法。 In order to reflect the actual case of human decisions and solve the data sparseness problem of traditional collaborative filtering recommendation algorithm, a trapezoid fuzzy model based on age fuzzy model was proposed. In this model, crisp point was fuzzified into trapezoid fuzzy number and the fuzziness and information of users' grade was taken into account when calculating user's similarity by trapezoid fuzzy number. Based on this model, the user fuzzy similarity-based collaborative filtering recommendation algorithm was designed. The algorithm was proved to be an extension of traditional collaborative filtering algorithm in fuzzy fields. The experimental results show that, the proposed algorithm performs better when implemented in the sparse dataset with more user than item, and its running time is much less than traditional collaborative filtering algorithm.
出处 《通信学报》 EI CSCD 北大核心 2016年第1期198-206,共9页 Journal on Communications
基金 国家重点基础研究发展计划("973"计划)基金资助项目(No.2012CB315901) 国家高技术研究发展计划("863"计划)基金资助项目(No.2011AA01AA103)~~
关键词 协同过滤 梯形模糊评分模型 模糊距离 模糊相似度 collaborative filtering trapezoid fuzzy model fuzzy distance fuzzy similarity
  • 相关文献

参考文献15

  • 1荣辉桂,火生旭,胡春华,莫进侠.基于用户相似度的协同过滤推荐算法[J].通信学报,2014,35(2):16-24. 被引量:149
  • 2李英壮,高拓,李先毅.基于云计算的视频推荐系统的设计[J].通信学报,2013,34(S2):138-140. 被引量:8
  • 3丁欣,马严,吴军.适用于校园网的视频推荐系统的设计与实现[J].通信学报,2013,34(S2):175-179. 被引量:4
  • 4ZHAO Z D,SHANG M S. User-based collaborative-filtering recom-meadation algorithms on hadoop[C]//WKDD’10 Third InternationalConference on Knowledge Discovery and Data Mining. c2010:478-481.
  • 5YANG J M, LI K F. Recommendation based on rational inferences incollaborative filtering[J]. Knowledge-Based Systems, 2009,22(1):105-114.
  • 6HUANG C K. Mining the change of customer behavior in fiizzytime-interval sequential pattems[J]. Applied Soft Computing, 2012,12(3):1068-1086.
  • 7YAGER R R. Fuzzy logic methods in recommender systems [J]. FuzzySets and Systems, 2003, 136(2):133-149.
  • 8SHAMRI M Y H,BHARADWAJ K K. Fuzzy-genetic approach torecommender system based on a novel hybrid user model[J]. ExpertSystems with Applications, 2008,35(3): 1386-1399 .
  • 9LE H S. HU-FCF: a hybrid user-based fuzzy collaborative filteringmethod in recommender systems [J]. Expert Systems with Applications,2014,41(15):6861-6870.
  • 10LUCAS J P, LUZ N, MORENO M N, et al. A hybrid recommendationapproach for a tourism system[J]. Expert Systems with Applications,2013,40(9):3532-3550.

二级参考文献21

  • 1罗奇,余英,赵呈领,曹艳.自适应推荐算法在电子超市个性化服务系统中的应用研究[J].通信学报,2006,27(11):183-186. 被引量:12
  • 2吴颜,沈洁,顾天竺,陈晓红,李慧,张舒.协同过滤推荐系统中数据稀疏问题的解决[J].计算机应用研究,2007,24(6):94-97. 被引量:51
  • 3ZHAO Z D,SHANG M S. User-based collaborative-filtering recom-mendation algorithms on hadoop[A].2010.478-481.
  • 4ZHANG J Y,PEARL P. A recursive prediction algorithm for collabor-ative filtering recommender systems[A].ACM,2007.57-64.
  • 5KRZYWICKI A,WOBCKE W,CAI X. Interaction-based collabora-tive filtering methods for recommendation in online dating[A].Springer Berlin Heidelberg,2010.342-356.
  • 6BR?ZOVSKY L,PET?I?EK V. Recommender system for online dating service[D].Charles University in Prague,2007.
  • 7PIZZATO L,REJ T,CHUANG T. RECON:a reciprocal recommender for online dating[A].2010.207-214.
  • 8WANG T T,LIU H Y,HE J. Predicting New User’s Behavior in Online Dating Systems[A].Springer Berlin Heidelberg,2011.266-277.
  • 9CHEN L,NAYAK R,XU Y. A recommendation method for online dating networks based on social relations and demographic informa-tion[A].2011.407-411.
  • 10HITSCH G J,HORTACSU A,ARIELY D. Matching and sorting in online dating[J].The American Economic Review,2010,(01):130-163.

共引文献394

同被引文献216

引证文献31

二级引证文献122

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部