期刊文献+

基于能量模型的LS-TSVM在人体动作识别中的应用 被引量:10

Energy model based LS-TSVM for action recognition
下载PDF
导出
摘要 传统人体动作识别分类器对异常值比较敏感,容易受固有噪声影响,这会导致严重的类失衡问题,所以相似的人体行为可能存在很大类内差异。提出一种基于能量的最小二乘双分界面支持向量机(ELS-TSVM)的人体动作识别算法。ELS-TSVM是LS-TSVM的有效改进,采用两个超平面,每个超平面引进能量参数来减少噪声和异常值的影响。首先对于输入的视频使用梯度方向直方图特征和光流直方图特征识别人体动作;然后检测可能的兴趣点,生成时空特征后提取时空视觉词袋特征,通过构建一组视觉词袋来完成特征提取;最后,利用ELSTSVM完成分类。在Weizmann和Hollywood数据库上的实验验证了该算法的有效性及可靠性,相比其他几种较新方法,该算法更加高效精确,且大大减少了算法执行时间。 Traditional classifier of human action recognition is sensitive to outliers and susceptible to the inherent noise, which results in severe class imbalance problem, so similar human behaviors may exist a wide class differences. This paper proposed the energy-based least square twin support vector machine ( ELS-TSVM ) human behavior recognition classifier. ELS-TSVM was an effective improvement to LS-TSVM, using two hyper-planes, and introduced energy parameter in each hyper-plane to reduce the effects of noise and outliers. Firstly, it used the gradient direction histogram feature (HOG) and optical flow histo- gram features (HOF) to realize human behavior. Then, detected the possible interesting points to generate spatial and tempo- ral characteristics and bag of features (BoFs). It completed the feature extraction by building a set of visual word of bag. Fi- nally, accomplished the recognition by ELS-TSVM. This paper used Weizmann and Hollywood databases , the experimental results show that the proposed method is more efficient and accurate, and the running time is greatly reduced, compared to several other relatively new methods.
出处 《计算机应用研究》 CSCD 北大核心 2016年第2期598-601,631,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61103143) 中国博士后科学基金资助项目(2012M512008) 新疆维吾尔自治区自然科学基金项目(2010211A08)
关键词 多分类识别 类失衡 双分界面支持向量机 人体动作识别 最小二乘法 multi-class classification class imbalance twin support vector machine human action recognition least square method
  • 相关文献

参考文献15

二级参考文献76

  • 1李宗民,刘玉杰,李振波,崔丽,李华.Bezier矩及其在人体姿态识别中的应用[J].计算机工程与应用,2005,41(24):38-40. 被引量:4
  • 2俞洋,殷志锋,田亚菲.基于自适应人工鱼群算法的多用户检测器[J].电子与信息学报,2007,29(1):121-124. 被引量:37
  • 3Rose Charles,Bodenheiraer Bobby,Cohen Michael F.Verbs and adverbs:Multidimensional motion interpolation using radial basis functions[J].IEEE Computer Graphics and Applications,1998,18(5):32-40.
  • 4Rose Charles,Guenter Brian,Bodenheimer Bobby,et al.Efficient generation of motion transitions using spacetime constraints[C]//Proceedings of the 23rd Annual Conference on Computer Graphics and Tnteractive Techniques.New York:ACM Press,1996:147-154.
  • 5Menardais Stephane,Multon Franck,Kulpa Richard,et al.Motion blending for real-time animation while accounting for the environment[C] //Proceedings of the International Conference on Computer Graphics,Los Alamitos CA,USA:IEEE Computer Society,2004:156-159.
  • 6Kovar Lucas,Gleicher Michael.Flexible automatic motion blending with registration curves[C]//Proceedings of the 2003 ACM SIGGRAPH/Eurographics,Aire-la-Ville,Switzerland:Eurographics Association,2003:214-224.
  • 7Kovar Lucas,Gleicher Michael.Motion graphs[J].ACM Transactions on Graphics(TOG),2002,21(3):473-482.
  • 8Gleicher Michael,Shin Hyun Joon,Kovar Lucas,et al.Snap-together motion:assembling run-time animations[C]// Proceeding of ACM SIGGRAPH 2003.New York:ACM Press,2003:181-188.
  • 9Zhao Liming,Safonova Alia.Achieving good connectivity in motion graphs[J].Graphical Models,2009,71(4):139-152.
  • 10Kovar Lucas,Gleicher Michael.Automated extraction and parameterization of motions in large data sets[J].ACM Transactions on Graphics(TOG),2004,23(3):559-568.

共引文献50

同被引文献72

引证文献10

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部