期刊文献+

基于WVPMCD和层次模糊熵的液压泵故障诊断方法研究 被引量:2

Method of Fault Diagnosis of Hydraulic Pump Based on WVPMCD and Hierarchical Fuzzy Entropy
下载PDF
导出
摘要 为了更准确地对液压泵进行故障诊断,提出了基于WVPMCD(WLS-Variable predictive mode based class discriminate,WVPMCD)和层次模糊熵(hierarchical fuzzy entropy,HFE)的故障诊断方法;由于液压泵振动信号比较复杂,基于变量预测模型的模式识别(variable predictive mode based class discriminate,VPMCD)方法在对模型参数进行估计时会出现异方差的现象,从而导致参数估计出现病态,估计所得参数不稳定,从而降低预测精度;WVPMCD作为VPMCD的改进,采用更先进的加权最小二乘参数估计法代替最小二乘参数估计法,消除异方差的影响,提高参数估计的精度,进而提高液压泵故障诊断准确率;此外,在层次熵(HierarchicalEntropy,HE)的基础上提出了层次模糊熵的概念,模糊熵作为样本熵的改进,在衡量时间序列复杂度上并比样本熵更优越;运用WVPMCD和层次模糊熵对液压泵进行故障诊断,实验结果验证了该方法的有效性。 In order to diagnose hydraulic pump more accurately, a new approach based on WVPMCD and HFE is proposed. Because hy draulic pump's vibation signal is complex, VPMCD' s parameter estimation will be heteroscedastic. And then, it will resault in morbidity and the gained parameter will be unstability. Thus, the prediction accuracy will decrease. As improvement of VPMCD, WVPMCD uses the advanced weighted least square parameter estimation method to replace ordinary least square parameter estimation method, which remove the affect of heteroscedasticity and improve accuracy of parameter estimation. Thus, accuracy of pattern recognition will be also increase. Furthermore, HFE is proposed on the base of HE. As improvement of SE, FE have advantage in measurement of time series' complexity. The proposed algorithm is verified by experimental data analysis.
作者 舒思材 韩东
机构地区 军械工程学院
出处 《计算机测量与控制》 2016年第1期85-88,98,共5页 Computer Measurement &Control
基金 国家自然科学基金(51275524)
关键词 WVPMCD 层次模糊熵 液压泵 故障诊断 WVPMCD hierarchical fuzzy entropy hydraulic pump fault diagnosis
  • 相关文献

参考文献7

  • 1Raghuraj R, Lakshminaryanan S. Variable Predictive Models A New Multivariate Classification Approach for Pattern Recognition Applications EJ~. Pattern Recognition, 2009, 42 (1): 7-16.
  • 2程军圣,马兴伟,杨宇.基于VPMCD和EMD的齿轮故障诊断方法[J].振动与冲击,2013,32(20):9-13. 被引量:21
  • 3罗颂荣,程军圣,郑近德,杨宇.GA-VPMCD方法及其在机械故障智能诊断中的应用[J].振动工程学报,2014,27(2):289-295. 被引量:4
  • 4杨宇,李永国,程军圣.WVPMCD及其在滚动轴承故障诊断中的应用[J].湖南大学学报(自然科学版),2014,41(2):52-57. 被引量:3
  • 5Riehmann J S, Moorman J R. Physiological Time Series Analysis Using Approximate Entropy and Sample Entropy ~J~. American Journal of Physiology- Heart and Circulatory Physiology, 2000, 278: 2039-2049.
  • 6Jiang Ying, Peng C K, Xu Yuesheng. Hierarchical Entropy Analy sis for Biological Signals ~J]. Journal of Computational and Applied Mathematies, 2011, (236)~ 728-742.
  • 7Zhu Keheng, Song Xigeng, Xue Dongxin. A Roller Bearing Fault Diagnosis Method Based on Hierarchical Entropy and Support Vec tot Machine with Particle Swarm Optimization Algorithm EJ]. Measurement, 2014 (47)= 669 -675.

二级参考文献22

  • 1胡桥,何正嘉,张周锁,訾艳阳,雷亚国.基于提升小波包变换和集成支持矢量机的早期故障智能诊断[J].机械工程学报,2006,42(8):16-22. 被引量:44
  • 2康海英,栾军英,郑海起,崔清斌.基于阶次跟踪和经验模态分解的滚动轴承包络解调分析[J].机械工程学报,2007,43(8):119-122. 被引量:37
  • 3刘占生,窦唯,王东华,王晓伟.基于遗传算法的旋转机械故障诊断方法融合[J].机械工程学报,2007,43(10):227-233. 被引量:28
  • 4Lei Y G, He Z J, Zi Y Y, et al. New clustering algorithm- based fault diagnosis using compensation distance evaluation technique [ J ]. Mechanical Systems and Signal Processing, 2008,22(2) :419 -435.
  • 5Rafiee J, Tse P W, Harifi A, et al. A novel technique for selecting mother wavelet function using an intelligent fault diagnosis system [J ]. Expert System with Applications, 2009, 36 (3) :4862 - 4875.
  • 6Wang C C, Kang Y, Shen P C, et al. Applications of faultdiagnosis in rotating machinery by using time series analysis with neural network [ J ]. Expert System With Application, 2010,37(2) : 1696 - 1702.
  • 7Fei S W, Zhang X B. Fault diagnosis of power transformer based on support vector machine with genetic algorithm [ J ]. Expert Systems with Application, 2009, 36 ( 8 ) : 11352 - 11357.
  • 8Raghuraj R, Lakshminarayanan S. Variable predictive models- a new multivariate classification approach for pattern recognition applications [ J] . Pattern Recognition, 2009, 42 (2009) :7 - 16.
  • 9Raghuraj R, Lakshminarayanan S. Variable predictive model based classification algorithm for effective separation of protein structural classes [ J ]. Computational Biology and Chemistry,2008,32 (4) : 302 - 306.
  • 10Raghuraj R, Lakshminarayanan S. VPMCD: Variable interaction modeling approach for class discrimination in biological system [ J ]. FEBS Letter, 2007,581 (5 - 6 ) : 826 - 830.

共引文献22

同被引文献11

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部