期刊文献+

基于点概率的K-means算法的改进

Improved K-means Algorithm Based on Dot-probability
下载PDF
导出
摘要 K-means算法是一种基于划分的方法,该算法对初始聚类中心的选取依赖性极大,初始中心值的不同导致聚类效果不稳定.为此,本文利用几何概率的思想,认为每个数据点都是等概率的存在于数据集,通过计算每个数据点的点概率值,结合距离因素,选择K个点作为初始聚类中心.实验证明,改进后的K-means算法聚类效果更好. K-means algorithm is a division-based method,which is greatly dependent on the choosing of initial cluster centers. Dif-ferent initial clustering center value can lead to unstable destabilizing effect. Thus,this article holds the idea that each data point in the da-ta set has the same probability through calculating dot-probability value for each data point and combining with the distance factor tochoose K points as the initial cluster centers by using the principle of geometric probability. Experiment shows that the improved K-meansalgorithm clustering effect is better.
出处 《柳州师专学报》 2015年第6期108-110,共3页 Journal of Liuzhou Teachers College
基金 云南省教育厅科学研究基金项目(2014Y634)
关键词 K-MEANS算法 初始中心 几何概率 K-means algorithm initial center geometric probability
  • 相关文献

参考文献6

  • 1Han J,Kamber M .数据挖掘概念与技术[M].第一版.范明,孟小峰,等,译.北京:机械工业出版社,2006.
  • 2牟颖,全太锋,.K-means算法的初始点优化研究[J].电脑知识与技术,2008,0(11Z):1176-1177. 被引量:1
  • 3Kaufman L,RousseeuwP J.Finding groups in data:anintro-duction to cluster analysis[M].New York:Wileys,1990.
  • 4Dhillon I S,Guan Y,Kogan J.Refining clusters in highdimensional text data[C].Procof the 2nd SIAM Workshop onClustering High Dimensional Data.2002:59-66.
  • 5Khan S S,Ahmad A.Cluster center initialization for K-meansclustering[J]. Pattern Recognition Letters,2004,25(11):1293-1302.
  • 6谢娟英,郭文娟,谢维信,高新波.基于样本空间分布密度的初始聚类中心优化K-均值算法[J].计算机应用研究,2012,29(3):888-892. 被引量:53

二级参考文献19

  • 1张惟皎,刘春煌,李芳玉.聚类质量的评价方法[J].计算机工程,2005,31(20):10-12. 被引量:60
  • 2李永森,杨善林,马溪骏,胡笑旋,陈增明.空间聚类算法中的K值优化问题研究[J].系统仿真学报,2006,18(3):573-576. 被引量:39
  • 3钱线,黄萱菁,吴立德.初始化K-means的谱方法[J].自动化学报,2007,33(4):342-346. 被引量:32
  • 4袁方,周志勇,宋鑫.初始聚类中心优化的k-means算法[J].计算机工程,2007,33(3):65-66. 被引量:153
  • 5HAN J W H,KAMBER M.数据挖掘概念与技术[M].范明,孟小峰,译.北京:机械工业出版社,2000.
  • 6KAUFMAN L, ROUSSEEUW P J. Finding groups in data: an intro- duction to cluster analysis[ M]. New York:Wileys, 1990.
  • 7DHILLON I S, GUAN Yu-qiang, KOGAN J. Refining clusters in high dimensional text data [ C ]//Proc of the 2nd SIAM Workshop on Clus- tering High Dimensional Data. 2002: 59-66.
  • 8KHAN S S, AHMAD A. Cluster center initialization for K-means clustering [ J]. Pattern Recognition Letters,2004, 25 (11):1293- 1302.
  • 9DEELERS S, AUWATANAMONGKOL S. Enhancing K-means algo- rithm with initial cluster centers derived from data partitioning along the data axis with the highest variance [ J]. Proceeding of World Academy of Science, Engineering and Technology, 2007,26 : 323- 328.
  • 10FRANK A, ASUNC!ON A. UCI machine learning repository [ R]. California : University of California, School of Information and Comput- er Science, 2010.

共引文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部