期刊文献+

基于社团主题的领域相关推荐算法 被引量:1

Domain Specific Recommendation Algorithm Based on Community Topics
下载PDF
导出
摘要 传统的协同过滤方法假设相似的用户有着相似的偏好,然而在不同的消费领域用户往往表现出不同的特征.此外,由于用户评价矩阵的稀疏性,使得相似用户的寻找极为困难.针对上述问题,该文提出了基于社团主题的领域相关推荐算法.首先,提出了一种包含社会网络,用户对商品的评价记录和项的分类三类信息的推荐框架.然后,分别提出了专家指导的主题模型和社会网络约束的主题模型.最后,对这两种模型进行综合,提出了统一推荐模型.实验表明,该文提出的方法具有较好的预测准确性,其性能明显优于其他相关算法. Traditional collaborative filtering methods assume that similar users have similar taste in buying commodities, but users usually present different features in different consumer sectors. In addition, the user rating matrix is sparse, which makes it difficult for finding similar users. This paper proposes a domain specific recommendation algorithm based on community topic in social network. Firstly, we propose a rec- ommendation framework including social network, rating records of users for items, and item category. Secondly, we propose an expert guided topic model and a network constrained topic model. Finally, we combine the above models into a unified recommendation model. The experiments show that, the proposed method has higher prediction accuracy, and obviously performs better than related works.
出处 《湘潭大学自然科学学报》 CAS 北大核心 2015年第4期92-97,共6页 Natural Science Journal of Xiangtan University
基金 内蒙古自治区教育厅课题(NJSC14338)
关键词 推荐算法 社团 聚类 社会网络 recommendation algorithm community cluster social network
  • 相关文献

参考文献9

  • 1许海玲,吴潇,李晓东,阎保平.互联网推荐系统比较研究[J].软件学报,2009,20(2):350-362. 被引量:544
  • 2KOOPMAN S J, LUCAS A, MONTEIRO A. The multi-state latent factor intensity model for credit rating transitions[J]. Journal of Econometrics, 2008, 142(1): 399-424.
  • 3YUAN M, LIN Y. Model selection and estimation in the Gaussian graphical model[J]. Biometrika, 2007, 94 (1) : 19-35.
  • 4BANERJEE A, KRUMPELMAN C, GHOSH J, et al. Moder-hased overlapping clustering[C]//Proeeedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining. ACM, 2005: 532-537.
  • 5WASSERMAN L. Bayesian model selection and model averaging[J]. Journal of Mathematical Psychology, 2000, 44(1): 92-107.
  • 6SALAKHUTDINOV R, MNIH A. Probabilistic matrix factorization[J]. Neural Information Processing Sys- tems,2007, 1(1): 2-10.
  • 7ZHANG Y, CAO B, YEUNG D Y. Multi-domain collaborative filtering[C]//Proceedings of the Twenty- Sixth Conference on Uncertainty in Artificial Intelligence, 2010: 725-732.
  • 8YANG X, STECK H,LIU Y. Circle-based recommendation in online social networks[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2012: 1 267-1 275.
  • 9龙际珍,赵欢.基于一种混合算法的分类规则挖掘[J].湘潭大学自然科学学报,2006,28(1):37-40. 被引量:1

二级参考文献73

  • 1姚新,陈国良,徐惠敏,刘勇.进化算法研究进展[J].计算机学报,1995,18(9):694-706. 被引量:102
  • 2Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 3Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 4Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 5Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 6Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
  • 7Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html
  • 8Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749.
  • 9Resnick P, Varian HR. Recommender systems. Communications of the ACM, 1997,40(3):56-58.
  • 10Balabanovic M, Shoham Y. Fab: Content-Based, collaborative recommendation. Communications of the ACM, 1997,40(3):66-72.

共引文献543

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部