摘要
从原始文献出发,运用历史研究的方法,结合数理分析,论述了黄宗宪、黄耀奎、叶耀元、蒋维钟、周达等晚清数学家以及一些书院学生在容圆圆心轨迹问题上所取得的成果.认为由于西方数学的输入与影响,晚清容圆问题内容更加丰富,传入的圆锥曲线知识被晚清中算家内化为自己的知识构成.
Based on the methods of historical research and the mathematical analyses of the source materials ,this article investigates the achievements on the problem of the locus of centers of the inscribed circles in theory by some mathematicians, such as Huang Zongxian, Huang Yaokui, Ye Yaoyuan,Jiang Weizhong,Zhou Da and so on,in the Irate Qing China. The paper draws on a conclusion that the problem about inscribed circles became more abundant because of the dissemination and impact of mathematics of the modern Occident in the Late Qing Dynasty, and the knowledge of conic sections was internalized into composition of knowledge by the Chinese traditional mathematicians.
出处
《内蒙古师范大学学报(自然科学汉文版)》
CAS
北大核心
2015年第6期839-845,共7页
Journal of Inner Mongolia Normal University(Natural Science Edition)
基金
国家自然科学基金资助项目(11001199)
中科院自然科学史研究所"科技知识的创造与传播"重大项目
天津师范大学青年基金项目(52XQ1405)
关键词
晚清
容圆问题
圆心轨迹
圆锥曲线
the late Qing China
the problem about inscribed circles
the locus of centers of the inscribed circles
conic section