期刊文献+

含微小颗粒气流横掠圆管束表面的沉积特性 被引量:4

Deposition characteristics of tube bundles in particulate cross-flow
下载PDF
导出
摘要 基于欧拉-拉格朗日粒子追踪模型和干燥粒子的沉积机制,采用Fluent-CFD软件和自编微粒沉积用户程序对含微小颗粒的气流横掠3×3阵列圆管束表面的粒子沉积特性进行数值研究。研究结果表明:随着粒径或进气气流速度增加,颗粒在管束表面的碰撞率增加,但黏附率降低;管排方式对小粒径颗粒影响较小,对大粒径颗粒影响较大;当粒子直径达到某一值后,尽管对壁面的碰撞能力加剧,但几乎不形成沉积。 Based on Euler-Lagrangian particle tracking module and dry particle deposition mechanism, a numerical simulation was made to predict the fine-particle deposition on the tube bundles with 3×3 array arrangement in a particulate cross-flow by using Fluent-CFD software and user-defined functions(UDFs), taking particles transport, sticking and detachment processes into consideration. The results show that when the particle diameter or inlet gas velocity increases, the particle impact efficiency on the tube-bundles is enhanced while the sticking efficiency is weakened. In relation to small particles, the deposition rate of the large particles is greatly influenced by the arrangement of tube bundles. For larger particles, although the impact capacity is significantly enhanced, almost no deposition occurs.
作者 唐婵 张靖周
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第12期4679-4685,共7页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(51276090)~~
关键词 飞灰颗粒 气-固两相流动 管束 沉积模型 数值模拟 ash particles gas-solid two-phase flow tube bundles deposition model numerical simulation
  • 相关文献

参考文献16

  • 1Bouris D,Bergeles G.Particle-surface interactions in heat exchanger fouling[J].Journal of Fluid Engineering,1996,118(3):574-581.
  • 2Brach R,Dunn P F.A mathematical model of the impact and adhesion of microspheres[J].Aerosol Science and Technology,1992,16(1):51-64.
  • 3Soltani M,Ahmadi G.On particle adhesion and removal mechanism in turbulent flows[J].Journal of Adhesion Science and Technology,1994,8(7):763-785.
  • 4Konstandopoulos A G.Particle sticking/rebound criteria at oblique impact[J].Journal of Aerosol Science,2006,37(3):292-305.
  • 5贾会霞,席光,高丽敏,闻苏平.Effects of Deposition Models on Deposition and Performance Deterioration in Axial Compressor Cascade[J].Chinese Journal of Aeronautics,2005,18(1):20-24. 被引量:2
  • 6Ai W G,Kuhlman J M.Simulation of coal ash particle deposition experiments[J].Energy and Fuels,2011,25(2):708-718.
  • 7Matos R S,Laursen T A,Vargas J V C,et al.Three-dimensional optimization of staggered finned circular and elliptic tubes in forced convection[J].International Journal of Thermal Sciences,2004,43(5):477-487.
  • 8Horvat A,Leskovar M,Mavko B.Comparison of heat transfer conditions in tube bundle cross-flow for different tube shapes[J].International Journal of Heat and Mass Transfer,2006,49(5):1027-1038.
  • 9Bouris D,Papadakis G,Bergeles G.Numerical evaluation of alternate tube bundle configurations for particle deposition rate reduction in heat exchanger tube bundles[J].International Journal of Heat and Fluid Flow,2001,22(1):525-536.
  • 10Bouris D,Konstantinidis E,Balabani S,et al.Design of a novel,intensified heat exchanger for reduced fouling rates[J],International Journal of Heat and Mass Transfer,2005,48(18):3817-3832.

二级参考文献13

共引文献24

同被引文献70

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部