期刊文献+

电子束辐照对尼龙66纤维结构和力学性能的影响 被引量:2

Effects of Electron Beam Irradiation on the Structure and Mechanical Properties of Nylon 66 Fiber
下载PDF
导出
摘要 研究了室温空气条件下电子束辐照剂量(范围0~1000 k Gy)对尼龙66纤维结构和力学性能的影响。利用广角X射线衍射仪、差示扫描量热仪、扫描电镜以及YG065型织物强力仪等测试方法研究了不同辐照剂量尼龙66的特性黏数、晶型结构、取向度、结晶和熔融行为,以及表面形貌和力学性能。研究结果表明,在设置的辐照剂量范围内,随着剂量的增加,纤维原有的晶型结构不变,但是,伴随辐照诱导非晶区分子链的重排,纤维的结晶度提高,取向有所改善,而结晶和熔融温度向低温偏移,熔融峰出现宽化。说明辐照主要导致尼龙66分子链氧化降解,降低其热稳定性,在电子束的撞击下,纤维表面产生了微裂纹,增加了应力集中,破坏了纤维的力学性能。 The nylon 66 fibers with different irradiation dose( from 0 to 1000 k Gy) were prepared at room temperature in air atmosphere,and the effects of irradiation dose on the structure,morphology and properties of these obtained fibers,such as crystal structure,melting behavior and mechanical properties were investigated by WAXD,DSC,SEM and YG065 type fabric strength tester. The results indicate that with the increase of the dose in the above range,the original crystal structure of the fibers does not change. The crystallinity of fibers raises and the orientation degree of molecular chains is improved with the increasing irradiation dose,which is induced by the chain segmental rearrangement in the amorphous area causes by irradiation. Both the crystallization and melting temperatures of the fibers shift to a lower degree and the melting peak becomes wider. These results suggest that the irradiation mainly accounts for the oxidative degradation of molecular chains. The thermal stability of fibers significantly decreases after irradiation. Under the impacts of the electron beam,the micro-cracks appear on the surface of fibers leading to an increase of stress concentration and destroy the mechanical properties of these obtained fibers.
出处 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2016年第2期99-103,108,共6页 Polymer Materials Science & Engineering
基金 总后重大科研项目
关键词 电子束辐照 尼龙66 晶型结构 熔融行为 力学性能 electron beam irradiation nylon 66 crystal structure melting behavior mechanical properties
  • 相关文献

参考文献5

二级参考文献40

  • 1朱诚身,陈玉,杨桂萍,王友文,王经武,莫志深.不同分子量初生态尼龙1010的熔融[J].高等学校化学学报,1996,17(5):805-807. 被引量:3
  • 2Lebourvellec G., Monnerie L., Jarry J. P.. Polymer[J], 1986, 27(6): 856--860.
  • 3Yu H. Y. , Zhang Y. , Ren W. T.. J. Polym. Sci. Polym. Phys. [J], 2009, 47(9) : 877--887.
  • 4Fang X. W. , Li X. H. , Yu L. G. , Zhang Z. J.. J. Applied Polymer Science[J], 2010, 115(6) : 3339--3347.
  • 5Salem D. R.. Polymer[J], 1995, 36(18) : 3605--3608.
  • 6MoZ. S., MengQ. B., FengJ. H., ZhangH. F., Chen D. L.. Polym. Int.[J], 1993, 32(1): 53--60.
  • 7YANGXiao-Zhen(杨小震) HUShi-Ru(胡世如) LUYa-Fei(吕亚非) ZHUShan-Nong(朱善农) LIXiang-Kui(李相魁).高分子学报,1985,3:202-206.
  • 8Lee J. W., Takade Y., Newman B. A., Scheinbeim J. I.. J. Polym. Sci. Polym. Phys. [J], 1991,29(3):273--277.
  • 9Itioh T.. Japan J. Appl. Phys. [J], 1976, 15(12) : 2295--2306.
  • 10Yang X. N., Li G., Zhou E. L.. Macromol. Chem. Phys. [J], 2001,202(9) : 1631--1637.

共引文献22

同被引文献11

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部