期刊文献+

两两NQD随机序列的完全收敛性 被引量:1

Complete convergence for pairwise NQD random sequences
下载PDF
导出
摘要 利用矩不等式和截尾方法,研究了两两NQD随机序列的完全收敛性,并将独立阵列的相关极限定理推广到了两两NQD阵列的情形,所得结果推广和改进了文献[6]中定理3的结论. By the mean's moment inequality an truncated method, this paper discussed the complete conver gence on the pairwise NQD random sequences, which generalized the corresponding limit results for independ ent random variable on pairwise NQD random sequences. The results presented in this paper extend and im prov the results of theorem three in document [6].
作者 王宽程
出处 《延边大学学报(自然科学版)》 CAS 2015年第4期292-294,共3页 Journal of Yanbian University(Natural Science Edition)
基金 福建省自然科学基金资助项目(2014J01007)
关键词 两两NQD列 慢变化函数 完全收敛性 pairwise NQD random sequences slowly variable function complete convergence
  • 相关文献

参考文献8

二级参考文献21

  • 1苏淳,赵林城,王岳宝.NA序列的矩不等式与弱收敛[J].中国科学(A辑),1996,26(12):1091-1099. 被引量:88
  • 2Joag-Dev, K., Proschan, F., Negative association of random variables with applications, Ann. Statist,11(1983), 286-295.
  • 3Chandra, T.K., Uniform integrability in the Cesaro sense and the week law of large numbers, Sankhya:the Indian Yournal of Statistics (series A), 51(1989), 309-317.
  • 4迟翔,苏淳.同分布NA序列的一个弱大数律[J].应用概率统计,1997,13(2):199-203. 被引量:20
  • 5Lehmann E L. Some Concepts of Dependence. Ann. Math. Statist, 1966, 37:1137-1153.
  • 6Matula P. A Note on the Almost Sure Convergence of Sums of Negatively Dependent Random Variables. Statist. Probab. Lett., 1992, 15(3): 209-213.
  • 7Chandra T K. Uniform Integrability in the Cesaro Sence and the Weak Law of Large Numbers.Sankhya: the Indian Tournal of Statistics (Series A), 1989, 51:309-317.
  • 8Pyke R, Root D. On convergence inr-mean of Normalized Partial Sums. Ann. Math. Statist., 1968,39(2): 379-381.
  • 9Lehmann E L. Some concepts of dependence. Ann. Math. Statist., 1966, 37: 1137-1153.
  • 10Matula P. A note on the almost sure convergence of sums of negatively dependent random variables.Statist. Probab. Lett., 1992, 15(3): 209-213.

共引文献134

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部