期刊文献+

不同燃烧器摆角下墙式切圆锅炉炉内数值模拟 被引量:1

Numerical Simulation of boiler with wall arrangement burners under different swing levels
下载PDF
导出
摘要 本文研究在不同工况下某660MW墙式切圆煤粉锅炉的炉内燃烧特性。使用ICEM CFD建立模型,通过Fluent14.0用数值模拟的方法研究不同燃烧器摆动下的燃烧特性和流动特性。动力学参数经过试验确定,并且通过现有工况验证,以此来得到炉内的研究结果:速度场、烟气温度等。本文对墙式切圆煤粉炉燃烧器的优化改造起到了一定的指导作用。 Numerical simulation was conducted on a 660MW boiler with wall arrangement burners to investigate combustion characteristics under different conditions. This paper use ICEM CFD to found model and Fluent 14.0 to simulate the characteristics of combustion and flow under different swing levels. These kinetic parameters are ensured by examination to get the result, such as velocity field, the temperature of flue gas. This paper have an instructional influence on optimize of boiler with wall arrangement burners.
出处 《锅炉制造》 2016年第1期23-28,共6页 Boiler Manufacturing
关键词 墙式切圆 燃烧情况 不同摆角 数值模拟 wall arrangement combustion characteristics different swing levels numerical simulation
  • 相关文献

参考文献2

二级参考文献42

  • 1[1]Harten A.High resolution scheme for hyperbolic system of conservation law[J].J Comp Phys,1983,(49): 357~393.
  • 2[2]Sweby P K.High resolution schemes using flux limiters for hyperbolic conservation laws[J].SIAM J Num Anal,1984,21: 995~1 011.
  • 3[3]Yee H C.Construction of explicit and implicit symmetric TVD scheme and their applications[J].J Comp Phys,1987,(68): 151~179.
  • 4[4]Steger J L,Warming R F.Flux vector splitting of the inviscid gasdynamic equations with application to finite difference methods[J].J Comp Phys,1981,(40): 263~293.
  • 5[5]Chakravarthy S R.The split-coefficient matrix method for hyperbolic system of gas dynamics equations[A].AIAA Paper[C],80-268,1980.
  • 6[6]Roe P L.Approximate Riemann solvers,parameter vectors and different schemes[J].J Comp Phys,1981,(43): 357~372.
  • 7[7]Van Leer B.Towards the ultimate conservative diffe-rence scheme V: A second order sequal to Godunov's method[J].J Comp Phys,1979,(32): 101~136.
  • 8[8]Jameson A,Schmidt W,Turkel E.Numerical solution of the Euler equation by finite volume methods with Runge-Kutta time stepping schemes[A].AIAA Paper [C],81-1259,1981.
  • 9[9]Ni R H.A Multiple grid scheme for solving the Euler equation[J].J AIAA,1982,20: 1 565~1 571.
  • 10[10]Van Leer B,Tai C H,Powell K G.Design of optimally smoothing multistage schemes for the Euler equations[A].AIAA Paper[C],89-1933,1989.

共引文献276

同被引文献19

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部